实现 pow(x, n) ,即计算 x 的 n 次幂函数(即,xn)。不得使用库函数,同时不需要考虑大数问题。
示例 1:
输入:x = 2.00000, n = 10 输出:1024.00000
示例 2:
输入:x = 2.10000, n = 3 输出:9.26100
示例 3:
输入:x = 2.00000, n = -2 输出:0.25000 解释:2-2 = 1/22 = 1/4 = 0.25
提示:
-100.0 < x < 100.0
-231 <= n <= 231-1
-104 <= xn <= 104
方法一:快速幂
class Solution {
public double myPow(double x, int n) {
if(x == 0){
return 0;
}
long b = n;
double count = 1.0;
if(b < 0){
x = 1 / x;
b = -b;
}
//x^n 把n分解成二进制数,把x^2表示当前位,最后的整数次方是相同的。
while(b > 0){
if((b & 1) == 1){ //判断n的二进制的第i位是否为1
count *= x;
}
x *= x; //此时的x已经是x^2^i
b >>= 1; //后移一位
}
return count;
}
}
为什么要用long b 代替int n,因为测试点中有int最小的数,int最小的负数绝对值比最大正数绝对值大一,所以无法转换。 故做题时应多多注意!