简单理解快速幂

简单理解快速幂
快速幂应用题

实现 pow(x, n) ,即计算 x 的 n 次幂函数(即,xn)。不得使用库函数,同时不需要考虑大数问题。

示例 1:

输入:x = 2.00000, n = 10 输出:1024.00000

示例 2:

输入:x = 2.10000, n = 3 输出:9.26100

示例 3:

输入:x = 2.00000, n = -2 输出:0.25000 解释:2-2 = 1/22 = 1/4 = 0.25

提示:

-100.0 < x < 100.0
-231 <= n <= 231-1
-104 <= xn <= 104

方法一:快速幂


class Solution {
    public double myPow(double x, int n) {
            if(x == 0){
                return 0;
            }
            long b = n;   
            double count = 1.0;
            if(b < 0){
                x = 1 / x;
                b = -b;
            }

            //x^n 把n分解成二进制数,把x^2表示当前位,最后的整数次方是相同的。
            while(b > 0){
                if((b & 1) == 1){    //判断n的二进制的第i位是否为1
                    count *= x;
                }
                x *=  x;             //此时的x已经是x^2^i 
                b >>= 1;             //后移一位
            }
            return count;
    }
    
}

为什么要用long b 代替int n,因为测试点中有int最小的数,int最小的负数绝对值比最大正数绝对值大一,所以无法转换。 故做题时应多多注意!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值