6月练习赛总结

文章回顾了两场编程竞赛中的题目,包括使用火柴棍构建最小数字的优化方法,暴力与动态规划解题策略的运用,以及在处理无解情况时的思考。另外,提到了树形动态规划问题的挑战以及博弈问题中同色环的影响。总结强调了比赛中考虑无解情况、部分分策略和动态规划思维的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.6月4日练习赛

     

        A.NKOJ9887火柴棍

                题意:用给定火柴棍摆出最小的数是多少,对998244853取模

 

                先暴力打出来一个表,找规律:

n2345678910111213141516171819202122232425
ans174208101822202868881081882002082886888881088188820082088

                可以发现,当n>=18时,ans[n]=ans[n-7]*10+8

                正确性:由于8需要的火柴棍最多(7根),所以8是最好的消耗火柴棍的方式,所以是正确的

                考场发现了规律,但是每一组数据都去算了一遍,没有想到预处理,最后TLE70

        B.凸

                原题:hihocoder#1596

                        题意:求随机打乱一个数组a,使得对于(2<=i<=n-1)的i,有ai-1+ai+1>=2*ai的总方案数

                        比赛的时候打的暴力搜索,实际上是一道dp题 下来看了题解觉得有点奇葩 四维的状态很难想

        C.冠军联赛        

                没有来得及打暴力 给这道题分配的时间比较少 题也没有怎么想

        D.彩色的树  Problem - 6035

        题意:给定一棵树,每个节点有一个颜色值。定义每条路径的值为经过的节点的不同颜色数。求所有路径的值和。

                这道题有人过了,所以想了一下,但是考试的时候觉得很难。

              是一道树形DP题 ,练得很少 所以完全没有思路

       总结一下第一场: 这场题很难 打的不是很好 一定要调好了再交 交题的机会很少。

二.6月11日模拟赛                 

        A.签到题 

               确实是一道签到题 还给了SPJ 十分的善良

                这种构造题 可以先判有没有解 

                        易证:只有a1=a2=a3=.........=an时,才无解。

                其次,构造就很简单了

                        由于双指针l和r再99.9%情况下是分别指向两个不同下标,所以可以利用双指针

                                a[i]!=l ,ans[i]=l     a[i]!=r,ans[i]=r

                        注意:取到最后一个数时,l=r,将最后一个数往前面任意一个符合条件的位置放即可

       B.翻转

                题意:将被(1,1) (n,m)最短路框起来的数取反 求最少几次可以让0变为1

                思路有两种

                        1.贪心:对于每一行的数 找最后一个1出现的位置 从上往下贪心 

                                比赛的时候大概是这样的 但是细节问题WA33

                        2.DP:十分巧妙 可以将问题转化为(1,m)到(n,1)的最长路

                                 最长路:对于a[i][j]和他的上一个点(a[i-1][j],a[i][j+1])不同时,路径长度+1

                

#include <bits/stdc++.h>
using namespace std;
int n,m;
int f[5005][5005];
char a[5005][5005]; 
int main () {
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++) scanf("%s",a[i]+1);
	for(int i=1;i<=m;i++) a[0][i]=a[1][i];
	for(int i=1;i<=n;i++) a[i][m+1]=a[i][m];
	for(int i=1;i<=n;i++) 
		for(int j=m;j>=1;j--)
			f[i][j]=max(f[i-1][j]+((a[i][j]-'0')!=(f[i-1][j]&1)),f[i][j+1]+((a[i][j]-'0')!=(f[i][j+1]&1)));
	printf("%d",f[n][1]);
	return 0;
}

        C.弹弹床

                通过30%的数据 受到启发 

                设fij为前i个延伸出j条路的方案 当a[n]=R时,只能以n为终点,答案为f[n][1]

                对于所有数据,再来一个g数组,表示后i个 

        ps:注意取模

                

#include <bits/stdc++.h>
using namespace std;
long long n,f[5005][5005],g[5005][5005],mod=1e9+7,q[5005];
char a[5005];
int main ()
{
	scanf("%lld",&n);
	if(n==1){printf("1");return 0;}
	scanf("%s",a+1);
	f[0][0]=g[n+1][0]=1,q[0]=1;
	for(long long i=1;i<=n;i++) q[i]=(q[i-1]*i)%mod;
	for(long long i=1;i<=n;i++)
	{
		for(long long j=1;j<=i;j++)
		{
			if(a[i]=='R')
			{
				f[i][j]=((f[i-1][j]*j)%mod+f[i-1][j-1])%mod;
			}
			else
			{
				f[i][j]=((f[i-1][j+1]*(j+1))%mod*j)%mod;
				f[i][j]+=(f[i-1][j]*j%mod)%mod;
				f[i][j]%=mod;
			}
		}
	}
	for(long long i=n;i>=1;i--)
	{
		for(long long j=1;j<=i;j++)
		{
			if(a[i]=='L')
			{
				g[i][j]=((g[i+1][j]*j)%mod+g[i+1][j-1])%mod;
			}
			else
			{
				g[i][j]=((g[i+1][j+1]*(j+1))%mod*j)%mod;
				g[i][j]+=((g[i+1][j]*j)%mod);
				g[i][j]%=mod;
			}
		}
	}
	for(long long i=1;i<=n;i++)
	{
		long long sum=0;
		for(long long j=0;j+j+1<=n;j++)
		{
			sum+=(((q[j]*f[i-1][j])%mod)*((q[j+1]*g[i+1][j+1])%mod))%mod;
			sum+=(((q[j]*g[i+1][j])%mod)*((q[j+1]*f[i-1][j+1])%mod))%mod;
			sum+=((((((q[j]*f[i-1][j])%mod)*((q[j]*g[i+1][j])%mod))%mod)*2)%mod);
			sum%=mod;
		}
		printf("%lld ",sum);
	}
	return 0;
}

         D.博弈 

                同样通过部分分得到启发 只要有同色环就无解

                但DP部分我还没有完全听懂 听懂了再补充一下

     第二场总结一下 该拿的部分分还是拿到了 有一些贪心的思路要多多尝试一下

最后的总结:一定要保证每道题都想一下 有无解的不会做的尝试输出一下-1

                      dp题要开动脑筋,多见一些模型。

                        OI赛制下该拿的部分分要拿到!

                       

                        

                

        

                         

                

                  

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值