分治法求众数

本文介绍了如何使用分治算法解决数组众数问题,通过设计思路将问题分解为求中位数数量的问题,详细阐述了算法描述、时间复杂度分析(O(nlogn)),并提供了实验步骤和代码示例。
摘要由CSDN通过智能技术生成

目录

一、目的

二、设计思路

三、算法描述:

四、时间复杂度分析

五、流程图

六、实验步骤和调试过程


一、目的

能够正确地应用分治算法解决众数问题,对边界值测试效果,能正确得分析算法时间复杂度。

二、设计思路

将求一个数组中的众数,分解成若干个求一个数组中中位数数量的小问题,利用分治算法求解各个小问题。

三、算法描述:
  1. 用algorithm 库中的sort 函数将随机数数组排序
  2. mid =(right +left)/2计算出中位数
    1. 检索出mid左侧相同的数数量sum
    2. 检索出mid右侧相同的数数量累加sum
  3. 比较sum与maxsum
    1. 若大于则清空vector,并存入sum
    2. 若若等于则将sum存入vector
  4. 若左侧数大于sum继续递归
    1. 若右侧数大于sum继续递归
四、时间复杂度分析

假定n=2^k,将递推式扩展:

T1(n)=2T(n/2)+1

    =2*2T(n/4)+1+1

    =2*2*2T(n/8)+1+1+1

    ......

    =2^k*T(1)+n

    =2n

时间复杂度为T(n)=T1(n)+T2(n)=O(nlogn)

五、流程图

、实验步骤和调试过程

1. 测试数据及结果分析

测试数据规模为:

规模

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

时间(ms)

244

502

824

1023

1258

1503

1876

2058

2257

散点图如下:

七、代码
#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

vector<int> z;
int maxsum = -1;

void findMode(int number[], int left, int right) {
    if (left >= right) {
        return;
    }

    int mid = (left + right) / 2;
    int count = 1;

    for (int i = mid + 1; i <= right && number[mid] == number[i]; ++i) {
        count++;
    }

    for (int j = mid - 1; j >= left && number[mid] == number[j]; --j) {
        count++;
    }

    if (count > maxsum) {
        z.clear();
        maxsum = count;
        z.push_back(number[mid]);
    } else if (count == maxsum) {
        z.push_back(number[mid]);
    }

    if (maxsum <= mid - left) {
        findMode(number, left, mid - 1);
    }
    if (maxsum <= right - mid) {
        findMode(number, mid + 1, right);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值