GAN学习笔记

GAN生成模型学习笔记

GAN算是现阶段生成模型里最好的model。通过判别器和生成器的反复对抗,能够不断更新判别器和生成器。本文从整体结构出发,系统的讲述GAN的流程和算法,并介绍当前较火的DCGAN,将卷积网络引入到生成式模型当中来做无监督的训练,利用卷积网络强大的特征提取能力来提高生成网络的学习效果。

GAN整体结构

由上图可以看出,GAN首先把噪声数据 z(也就是我们说的假数据)通过生成模型 G,伪装成了真实数据 x。之后将x输入到判别器中,由判别器判别是真实图片或虚假图片。我们最终想得到的结果是判别器的输出无限接近1/2.换句话说,判别器无法分辨出真伪数据的差别。这时候,我们就可以说我们训练出了一个造假能力一流的生成模型。

GAN算法流程

初始化判别器D的参数 Θ d \Theta_{d} </

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值