文献学习-On Lattices, Learning with Errors,Random Linear Codes, and Cryptography

这篇论文介绍了从最坏情况下的格问题(如SVP、SIVP)到学习错误问题(LWE)的量子归约。LWE问题与随机线性码解码等价,提出的新公钥密码系统的效率远高于前人工作,其安全性基于SVP和SIVP的量子难度。主要挑战在于证明这一归约是否可转化为经典算法。
摘要由CSDN通过智能技术生成

On Lattices, Learning with Errors,Random Linear Codes, and Cryptography

格上的LWE、随机线性码和密码学

Oded Regev
Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel

摘要

Our main result is areduction from worst-case lattice problems such as SVP and SIVP to a certain learning problem. This learning problem is a natural extension of the ‘learning from parity with error’ problem to higher moduli. It can also be viewed as the problem of decoding from a random linear code. This, we believe,gives a strong indication that these problems are hard. Our reduction, however, is quantum. Hence, an efficient solution to the learning problem implies aquantumalgorithm for SVP and SIVP. A main open question is whether this reduction can be made classical.

主要成果:一个从最坏情况下的格问题(如SVP\SIVP)到一类学习性问题的归约。这类学习性问题是learning from parity with error(从奇偶错误校验中自学习?不好翻,意会就行)到更高模量的一个自然延伸。这也可以被视为线性随机码解码问题。

我们的归约是量子性的。这意味着这类问题的有效解决方法是SVP\SIVP的量子算法。

一个开放性问题是这种归约是否可作为经典。

Using the main result, we obtain a public key cryptosystem whose hardness is based on the worst-case quantum hardness of SVP and SIVP. Previous lattice-based public key cryptosystems such as the one by Ajtaiand Dwork were only based on unique-SVP, a special case of SVP. The new cryptosystemis much more efficient than previous cryptosystems:  the  public key  is of  size O˜(n2)  and  encrypting a message increases its size byO˜(n) (in previous cryptosystems  these  values  are  O˜(n4)  and  O˜(n2),  respectively).  In fact, under the assumption that all parties share a random bit string of lengthO˜(n2), the size of the public key can be reduced toO˜(n).

我们得到一个公钥系统(拥有最坏情况下SVP\SIVP的量子困难性)。

之前的基于格的公钥系统仅依赖 unique-SVP。而新系统显然更加高效:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值