LIS问题

参考阅读: http://blog.csdn.net/jkay_wong/article/details/7226189

http://blog.csdn.net/tclh123/article/details/6302360



A.
O(n^2)算法分析如下: 

(a[1]...a[n] 存的都是输入的数) 
1、对于a[n]来说,由于它是最后一个数,所以当从a[n]开始查找时,只存在长度为1的不下降子序列; 
2、若从a[n-1]开始查找,则存在下面的两种可能性: 
(1)若a[n-1] < a[n] 则存在长度为2的不下降子序列 a[n-1],a[n];
(2)若a[n-1] > a[n] 则存在长度为1的不下降子序列 a[n-1]或者a[n]。 
3、一般若从a[t]开始,此时最长不下降子序列应该是按下列方法求出的: 
在a[t+1],a[t+2],...a[n]中,找出一个比a[t]大的且最长的不下降子序列,作为它的后继。 
4、为算法上的需要,定义一个数组:
int d[n][3]; 
d[t][0]表示a[t]; 
d[t][1]表示从i位置到达n的最长不下降子序列的长度;
d[t][2]表示从i位置开始最长不下降子序列的下一个位置。
实现代码如下:
     #include <iostream>
     using namespace std;
     int main()
     {
      int i,j,n,a[100],b[100],max;
      while(cin>>n)
      {
       for(i=0;i<n;i++)
        cin>>a[i];
       b[0]=1;//初始化,以a[0]结尾的最长递增子序列长度为1
       for(i=1;i<n;i++)
       {
        b[i]=1;//b[i]最小值为1
        for(j=0;j<i;j++)
         if(a[i]>a[j]&&b[j]+1>b[i])
          b[i]=b[j]+1;
       } 
       for(max=i=0;i<n;i++)//求出整个数列的最长递增子序列的长度
        if(b[i]>max)
         max=b[i];
       cout<<max<<endl;
      }
      return 0;
     }
    显然,这种方法的时间复杂度仍为o(n^2);

B.
最长不下降子序列的O(n*logn)算法分析如下:

设 A[t]表示序列中的第t个数,F[t]表示从1到t这一段中以t结尾的最长上升子序列的长度,初始时设F [t] = 0(t = 1, 2, ..., len(A))。则有动态规划方程:F[t] = max{1, F[j] + 1} (j = 1, 2, ..., t - 1, 且A[j] < A[t])。 

现在,我们仔细考虑计算F[t]时的情况。假设有两个元素A[x]和A[y],满足 
(1)x < y < t 
(2)A[x] < A[y] < A[t] 
(3)F[x] = F[y] 
此时,选择F[x]和选择F[y]都可以得到同样的F[t]值,那么,在最长上升子序列的这个位置中,应该选择A[x]还是应该选择A[y]呢? 
很明显,选择A[x]比选择A[y]要好。因为由于条件(2),在A[x+1] ... A[t-1]这一段中,如果存在A[z],A[x] < A[z] < a[y],则与选择A[y]相比,将会得到更长的上升子序列。 
再根据条件(3),我们会得到一个启示:根据F[]的值进行分类。对于F[]的每一个取值k,我们只需要保留满足F[t] = k的所有A[t]中的最小值。设D[k]记录这个值,即D[k] = min{A[t]} (F[t] = k)。 

注意到D[]的两个特点: 
(1) D[k]的值是在整个计算过程中是单调不上升的。 
(2) D[]的值是有序的,即D[1] < D[2] < D[3] < ... < D[n]。 

利 用D[],我们可以得到另外一种计算最长上升子序列长度的方法。设当前已经求出的最长上升子序列长度为len。先判断A[t]与D[len]。若A [t] > D[len],则将A[t]接在D[len]后将得到一个更长的上升子序列,len = len + 1, D[len] = A [t];否则,在D[1]..D[len]中,找到最大的j,满足D[j] < A[t]。令k = j + 1,则有A [t] <= D[k],将A[t]接在D[j]后将得到一个更长的上升子序列,更新D[k] = A[t]。最后,len即为所要求的最长上 升子序列的长度。 

在 上述算法中,若使用朴素的顺序查找在D[1]..D[len]查找,由于共有O(n)个元素需要计算,每次计算时的复杂度是O(n),则整个算法的 时间复杂度为O(n^2),与原来的算法相比没有任何进步。但是由于D[]的特点(2),我们在D[]中查找时,可以使用二分查找高效地完成,则整个算法 的时间复杂度下降为O(nlogn),有了非常显著的提高。需要注意的是,D[]在算法结束后记录的并不是一个符合题意的最长上升子序列!

   #include <iostream>
     using namespace std;
     int find(int *a,int len,int n)//若返回值为x,则a[x]>=n>a[x-1]
     {
      int left=0,right=len,mid=(left+right)/2;
      while(left<=right)
      {
       if(n>a[mid]) left=mid+1;
       else if(n<a[mid]) right=mid-1;
       else return mid;
       mid=(left+right)/2;
      }
      return left;  
     }
     void fill(int *a,int n)
     {
      for(int i=0;i<=n;i++)
      a[i]=1000;
     }
     int main()
     {
      int max,i,j,n,a[100],b[100],c[100];
      while(cin>>n)
      {
       fill(c,n+1);
       for(i=0;i<n;i++)
        cin>>a[i];
       c[0]=-1;//    …………………………………………1
       c[1]=a[0];//        ……………………………………2
       b[0]=1;//     …………………………………………3
       for(i=1;i<n;i++)//        ………………………………4
       {
                 j=find(c,n+1,a[i]);//   ……………………5
                c[j]=a[i];// ………………………………6
               b[i]=j;//……………………………………7
       }
       for(max=i=0;i<n;i++)//………………………………8
        if(b[i]>max)
         max=b[i];
       cout<<max<<endl;
      }
      return 0;
     }

    对于这段程序,我们可以用算法导论上的loop invariants来帮助理解.
    loop invariant: 1、每次循环结束后c都是单调递增的。(这一性质决定了可以用二分查找)
                           2、每次循环后,c[i]总是保存长度为i的递增子序列的最末的元素,若长度为i的递增子序

                                  列有多个,刚保存末尾元素最小的那个.(这一性质决定是第3条性质成立的前提)
                           3、每次循环完后,b[i]总是保存以a[i]结尾的最长递增子序列。
    initialization:    1、进入循环之前,c[0]=-1,c[1]=a[0],c的其他元素均为1000,c是单调递增的;
                           2、进入循环之前,c[1]=a[0],保存了长度为1时的递增序列的最末的元素,且此时长度为1

                                 的递增了序列只有一个,c[1]也是最小的;
                           3、进入循环之前,b[0]=1,此时以a[0]结尾的最长递增子序列的长度为1.
    maintenance:   1、若在第n次循环之前c是单调递增的,则第n次循环时,c的值只在第6行发生变化,而由

                                c进入循环前单调递增及find函数的性质可知(见find的注释),

                                 此时c[j+1]>c[j]>=a[i]>c[j-1],所以把c[j]的值更新为a[i]后,c[j+1]>c[j]>c[j-1]的性质仍然成

                                立,即c仍然是单调递增的;
                           2、循环中,c的值只在第6行发生变化,由c[j]>=a[i]可知,c[j]更新为a[i]后,c[j]的值只会变

                                  小不会变大,因为进入循环前c[j]的值是最小的,则循环中把c[j]更新为更小的a[i],当

                                 然此时c[j]的值仍是最小的;
                           3、循环中,b[i]的值在第7行发生了变化,因为有loop invariant的性质2,find函数返回值

                                为j有:c[j-1]<a[i]<=c[j],这说明c[j-1]是小于a[i]的,且以c[j-1]结尾的递增子序列有最大的

                               长度,即为j-1,把a[i]接在c[j-1]后可得到以a[i]结尾的最长递增子序列,长度为(j-1)+1=j;
    termination:       循环完后,i=n-1,b[0],b[1],...,b[n-1]的值均已求出,即以a[0],a[1],...,a[n-1]结尾的最长递

                              增子序列的长度均已求出,再通过第8行的循环,即求出了整个数组的最长递增子序列。

          仔细分析上面的代码可以发现,每次循环结束后,假设已经求出c[1],c[2],c[3],...,c[len]的值,则此时最长递增子序列的长度为len,因此可以把上面的代码更加简化,即可以不需要数组b来辅助存储,第8行的循环也可以省略。
     #include <iostream>
     using namespace std;
     int find(int *a,int len,int n)//修改后的二分查找,若返回值为x,则a[x]>=n
     {
      int left=0,right=len,mid=(left+right)/2;
      while(left<=right)
      {
       if(n>a[mid]) left=mid+1;
       else if(n<a[mid]) right=mid-1;
       else return mid;
       mid=(left+right)/2;
      }
      return left;
     }
     int main()
     {
      int n,a[100],c[100],i,j,len;//新开一变量len,用来储存每次循环结束后c中已经求出值的元素的最大下标
      while(cin>>n)
      {
       for(i=0;i<n;i++)
        cin>>a[i];
       b[0]=1;
       c[0]=-1;
       c[1]=a[0];
       len=1;//此时只有c[1]求出来,最长递增子序列的长度为1.
       for(i=1;i<n;i++)
       {
        j=find(c,len,a[i]);
        c[j]=a[i];
        if(j>len)//要更新len,另外补充一点:由二分查找可知j只可能比len大1
         len=j;//更新len
          }
      cout<<len<<endl;
      }
      return 0;
     }




-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------



这是O(n^2)的算法:

 

·········10········20········30········40········50········60········70········80········90········100·······110·······120·······130·······140·······150
  1. #include<stdio.h>  
  2. int main()  
  3. {  
  4.     int n,i,k,max,lis[1001],num[1001];  
  5.     while(scanf("%d",&n)!=EOF)  
  6.     {     
  7.         for(i=0;i<n;i++)  
  8.         {  
  9.             scanf("%d",&num[i]);  
  10.             lis[i]=1;  
  11.         }  
  12.         for(i=1;i<n;i++)  
  13.             for(k=0;k<i;k++)  
  14.                 if(num[k]<=num[i]&&lis[i]<lis[k]+1)   //当前数比之前数大&&当前记录值≤之前记录值,这样,把当前记录值加一  
  15.                     lis[i]++;  
  16.         max=1;  
  17.         for(i=0;i<n;i++)  
  18.             if(max<lis[i])  
  19.                 max=lis[i];  
  20.         printf("%d/n",max);  
  21.     }  
  22.     return 0;  
  23. }  

 

O(n*log2n)的算法:用到二分

此时 以lis的下标值 表示 以当前下标对应的lis值为结尾的递增序列的长度

·········10········20········30········40········50········60········70········80········90········100·······110·······120·······130·······140·······150
  1. //最长不下降子序列  
  2. #include<stdio.h>   
  3. int lis[1001];   
  4. int binarysearch(int left,int right,int number)   
  5. {   
  6.     int mid;   
  7.     while(left<=right)   
  8.     {   
  9.         mid=left+(right-left)/2;   
  10.         if(lis[mid]<=number)    left=mid+1;  /*最长不下降子序列 O(nlog2(n)) <改成≤*/  
  11.         else    right=mid-1;   
  12.     }   
  13.     return right;   
  14. }   
  15. int main()   
  16. {   
  17.     int n,tot,num,meet;   
  18.     while(scanf("%d%d",&n,&lis[0])!=EOF)   
  19.     {   
  20.         tot=1;   
  21.         while(--n)   
  22.         {   
  23.             scanf("%d",&num);   
  24.             if(num>=lis[tot-1])    lis[tot++]=num; /*<改成≤*/  
  25.             else if(num<lis[tot-1])   
  26.             {   
  27.                 meet=binarysearch(0,tot-1,num);   
  28.                 lis[++meet]=num;  
  29.             }   
  30.         }   
  31.         printf("%d/n",tot);   
  32.     }   
  33.     return 0;   
  34. }  


双向LIS问题:

题意:一次给出n个士兵的高度,要求去掉几个人以保证剩余的每个人都满足:

向左或者右其中一个方向上,所有人比他低。

比如 1 2 3 2 1 就是一种满足条件的情况。

要求求出要满足条件的至少去掉多少人。

题解:首先要理解LIS最长上升子序列的求法

最长上升子序列顾名思义就是求一个数列中保证严格上升的序列个数最大值

如 4 1 2 3 6 5 7 这个数列的LIS 就是 5 (即 1 2 3 5 7)

用状态转移方程 b[i] = max{b[k]+1}   (k<i && a[k]<a[i]) 实现LIS求解

求法详见各种百科。

其次因为是要双向单调,所有对原有身高数列进行从前到后从后到前两次LIS ,分别存入数组b[i] c[i]中

然后枚举每个身高,他之前的升序最大值和他之后的降序最大值即为所求,为节省时间,再次dp

用mi[i](mfi[i])分别表示到i为止前面(后边)的最大上升(下降)子序列。

状态转移方程 mi[i] = max (mi[i-1],b[i])

以上求法存在一个问题就是如果输入形如 1 2 3 3 2 1

用上面的方法得到的结果是 1 2 3 2 1 其实 1 2 3 3 2 1 本身就是满足条件的,所有还要考虑枚举的那个身高是否加入接下来的下降序列。

再次 rans[i] = max (mi[i]+mfi[i]-1, mi[i]+mfi[i+1])

即当前最优解为 以枚举点为中心向两边递减 或者 以枚举点为和右边某点为两个中心向两边递减 中的最大值。

ans = max(rans[i])     1<=i<=n


[cpp]  view plain copy
  1. #include <stdio.h>  
  2. #include <stdlib.h>  
  3. #include <math.h>  
  4. int n,l,r,rans,ans,b[1001],c[1001],mi[1001],mfi[1001],p;  
  5. double a[1001];  
  6. void lis()  
  7. {  
  8.     int i,j,max,max2=0;  
  9.     b[1] = 1;  
  10.     for (i=2;i<=n;i++)  
  11.     {  
  12.         max = 0;  
  13.         for (j=1;j<i;j++)  
  14.         {  
  15.             if (a[j]<a[i] && b[j]>max)  
  16.             {  
  17.                  max = b[j];  
  18.             }  
  19.         }  
  20.         b[i] = max + 1;  
  21.     }   
  22. }  
  23. void flis()  
  24. {  
  25.     int i,j,max,max2=0;  
  26.     c[n] = 1;  
  27.     for (i=n-1;i>=1;i--)  
  28.     {  
  29.         max = 0;  
  30.           
  31.         for (j=n;j>i;j--)  
  32.         {  
  33.             if (a[j]<a[i] && c[j]>max)  
  34.             {  
  35.                 max = c[j];  
  36.             }  
  37.         }  
  38.         c[i] = max + 1;  
  39.     }  
  40. }  
  41. int maxn(int a,int b)  
  42. {  
  43.     return a>b?a:b;  
  44. }  
  45. int main()  
  46. {  
  47.     int i,j,max;  
  48.     ans = 0;  
  49.     scanf("%d", &n);  
  50.     for (i=1;i<=n;i++)  
  51.     {  
  52.         scanf("%lf", &a[i]);  
  53.     }  
  54.     lis();  
  55.     flis();  
  56.     mi[1] = b[1];  
  57.     mfi[n] = c[n];  
  58.     for (i=2;i<=n;i++)  
  59.     {  
  60.         mi[i] = maxn(mi[i-1], b[i]);  
  61.     }  
  62.     for (i=n-1;i>=1;i--)  
  63.     {  
  64.         mfi[i] = maxn(mfi[n+1], c[i]);  
  65.     }  
  66.     for (i=1;i<=n;i++)  
  67.     {  
  68.         rans = maxn(mi[i]+mfi[i]-1,mi[i]+mfi[i+1]);  
  69.         if (rans>ans)  
  70.         ans = rans;  
  71.           
  72.     }  
  73.     printf("%d\n", n-ans);  
  74.     system("pause");  
  75. }  



 扩展:

拦截导弹(missile.pas)

    某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。

   输入导弹依次飞来的高度(雷达给出的高度数据是不大于30000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。

【样例输入】 missile.in                        

389 207 155 300 299 170 158 65    

【输出样例】missile.out

6(最多能拦截的导弹数)

2(要拦截所有导弹最少要配备的系统数)


该问题也是寻找序列的 递减序列,即为LIS算法
寻找最长的序列,从集合中删除,再次寻找,直到集合为空,寻找次数即为需要系统数



轮船问题(ship.pas)

【问题描述】

某国家被一条河划分为南北两部分,在南岸和北岸总共有N对城市,每一城市在对岸都有唯一的友好城市,任何两个城市都没有相同的友好城市。每一对友好城市都希望有一条航线来往,于是他们向政府提出了申请。由于河终年有雾。政府决定允许开通的航线就互不交叉(如果两条航线交叉,将有很大机会撞船)。兴建哪些航线以使在安全条件下有最多航线可以被开通。

【输入格式】

输入文件(ship.in):包括了若干组数据,每组数据格式如下:

    第一行两个由空格分隔的整数x,y,10〈=x〈=6000,10〈=y〈=100。x表示河的长度而y表示宽。第二行是一个整数N(1<=N<=5000),表示分布在河两岸的城市对数。接下来的N行每行有两个由空格分隔的正数C,D(C、D〈=x〉,描述每一对友好城市与河起点的距离,C表示北岸城市的距离而D表示南岸城市的距离。在河的同一边,任何两个城市的位置都是不同的。

【输出格式】

输出文件(ship.out):要在连续的若干行里给出每一组数据在安全条件下能够开通的最大航线数目。

【输入输出样例】

Ship.in

30  4

5

4  5

2  4

5  2

1  3

3  1

Ship.out

3

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值