-
数据治理的意义与价值
数据治理是构建完善、共享、统一管理数据环境的基本保障,是将数据作为资产来管理的有效手段。它确保业务数据在采集、集中、转换、存储、应用过程中的完整性、准确性、一致性和时效性,助力企业实现更多业务价值。
-
数据平台建设的核心原则
数据平台建设需遵循数据战略、数据应用与服务、数据管理、保障机制四大原则。这些原则共同支撑起数据平台的稳定运行,促进数据的高效利用。
-
数据平台的架构与功能
数据平台包括数据调度与处理、大数据结构化转换、大数据分析计算等核心功能。通过分布式数据库、分布式文件系统等基础设施,实现数据的全生命周期管理,为数据应用提供坚实基础。
-
数据治理框架与目标
数据治理框架包括数据组织与职责、数据制度与管理流程、数据服务管理等多个方面。其目标是发现数据质量问题,推动数据治理工作的开展,建立数据质量检核系统,统一全行口径,优化数据架构。
-
数据仓库模型框架的建设
建立稳定、可扩展的数据仓库模型框架是数据治理的重要一环。通过引进业内先进的金融数据模型,进行客户化改造,建成符合企业特点的数据仓库模型框架,为应用系统提供快速高效的数据支持。
-
数据质量检核系统的实施
数据质量检核系统是对源系统进行数据质量检核,发现数据质量问题并统计影响到的报表。通过对数据质量问题进行归类总结,分析成因和改进建议,不断提升数据质量。
-
数据标准的制定与统一
分析、梳理业务系统,推动数据标准的建立,是确保数据一致性和准确性的关键。通过制定基础标准和指标标准框架&