问题描述
箱子里一共10个球,6个黑色,4个白色,不放回抽5次,其中有3个是黑球的概率
超几何分布
超几何分布是一种离散型概率分布,不放回抽样。
二项分布和几何分布均基于伯努利试验,即每次试验概率不变,而超几何分布的概率会随着每一次试验而改变。
定义:抽到正例数 k k k,正反例总数 M M M,正例总数 n n n,抽样次数 N N N
概率质量函数(PMF):
p ( k , M ; n ; N ) = ( n k ) ( M − n N − k ) ( M N ) p\left( k,M;n;N \right) =\frac{\left( \begin{array}{c} n\\ k\\ \end{array} \right) \left( \begin{array}{c} M-n\\ N-k\\ \end{array} \right)}{\left( \begin{array}{c} M\\ N\\ \end{array} \right)} p(k,M;n;N)=(MN)(nk)(M−nN−k)
即
P ( X = k ) = C k n C N − k M − n C N M , k ∈ { 0 , 1 , 2... min ( n , N ) } P\left( X=k \right) =\frac{C_{k}^{n}C_{N-k}^{M-n}}{C_{N}^{M}},\ k\in \left\{ 0,1,2...\min \left( n,N \right) \right\} P(X=k)=CNMCknCN−kM−n, k∈{0,1,2...min(n,N)}
常用于抽奖、质检。
例题
print('箱子里一共10个球,6个黑色,4个白色,不放回抽5次,其中有3个是黑球的概率')
print(stats.hypergeom.pmf(k=3, M=10, n=6, N=5))
# 箱子里一共10个球,6个黑色,4个白色,不放回抽5次,其中有3个是黑球的概率
# 0.4761904761904759