Python超几何分布完成抽奖、质检任务

问题描述

箱子里一共10个球,6个黑色,4个白色,不放回抽5次,其中有3个是黑球的概率

超几何分布

超几何分布是一种离散型概率分布,不放回抽样

二项分布和几何分布均基于伯努利试验,即每次试验概率不变,而超几何分布的概率会随着每一次试验而改变

定义:抽到正例数 k k k,正反例总数 M M M,正例总数 n n n,抽样次数 N N N

概率质量函数(PMF):

p ( k , M ; n ; N ) = ( n k ) ( M − n N − k ) ( M N ) p\left( k,M;n;N \right) =\frac{\left( \begin{array}{c} n\\ k\\ \end{array} \right) \left( \begin{array}{c} M-n\\ N-k\\ \end{array} \right)}{\left( \begin{array}{c} M\\ N\\ \end{array} \right)} p(k,M;n;N)=(MN)(nk)(MnNk)

P ( X = k ) = C k n C N − k M − n C N M ,   k ∈ { 0 , 1 , 2... min ⁡ ( n , N ) } P\left( X=k \right) =\frac{C_{k}^{n}C_{N-k}^{M-n}}{C_{N}^{M}},\ k\in \left\{ 0,1,2...\min \left( n,N \right) \right\} P(X=k)=CNMCknCNkMn, k{0,1,2...min(n,N)}

常用于抽奖、质检。

在这里插入图片描述

例题

print('箱子里一共10个球,6个黑色,4个白色,不放回抽5次,其中有3个是黑球的概率')
print(stats.hypergeom.pmf(k=3, M=10, n=6, N=5))
# 箱子里一共10个球,6个黑色,4个白色,不放回抽5次,其中有3个是黑球的概率
# 0.4761904761904759

参考文献

  1. 超几何分布
  2. scipy.stats.hypergeom
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

XerCis

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值