ZS the Coder and Chris the Baboon arrived at the entrance of Udayland. There is a n × n magic grid on the entrance which is filled with integers. Chris noticed that exactly one of the cells in the grid is empty, and to enter Udayland, they need to fill a positive integer into the empty cell.
Chris tried filling in random numbers but it didn't work. ZS the Coder realizes that they need to fill in a positive integer such that the numbers in the grid form a magic square. This means that he has to fill in a positive integer so that the sum of the numbers in each row of the grid (), each column of the grid (), and the two long diagonals of the grid (the main diagonal — and the secondary diagonal — ) are equal.
Chris doesn't know what number to fill in. Can you help Chris find the correct positive integer to fill in or determine that it is impossible?
The first line of the input contains a single integer n (1 ≤ n ≤ 500) — the number of rows and columns of the magic grid.
n lines follow, each of them contains n integers. The j-th number in the i-th of them denotes ai, j (1 ≤ ai, j ≤ 109 or ai, j = 0), the number in the i-th row and j-th column of the magic grid. If the corresponding cell is empty, ai, j will be equal to 0. Otherwise, ai, j is positive.
It is guaranteed that there is exactly one pair of integers i, j (1 ≤ i, j ≤ n) such that ai, j = 0.
Output a single integer, the positive integer x (1 ≤ x ≤ 1018) that should be filled in the empty cell so that the whole grid becomes a magic square. If such positive integer x does not exist, output - 1 instead.
If there are multiple solutions, you may print any of them.
3 4 0 2 3 5 7 8 1 6
9
4 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1
4 1 1 1 1 1 1 0 1 1 1 2 1 1 1 1 1
-1
In the first sample case, we can fill in 9 into the empty cell to make the resulting grid a magic square. Indeed,
The sum of numbers in each row is:
4 + 9 + 2 = 3 + 5 + 7 = 8 + 1 + 6 = 15.
The sum of numbers in each column is:
4 + 3 + 8 = 9 + 5 + 1 = 2 + 7 + 6 = 15.
The sum of numbers in the two diagonals is:
4 + 5 + 6 = 2 + 5 + 8 = 15.
In the third sample case, it is impossible to fill a number in the empty square such that the resulting grid is a magic square.
题目简洁明了,但是我还是理解错了两个东西。一个是,横着竖着斜着加起来的和都是一样的!否则数据88会wa掉(不要问我是怎么知道的)然后就是如果0就是答案的话,是不可行的,题目要求输出-1或者1到10^18的数字,不判定是否为0数据7会wa掉(都是泪)
这题目的时间限制是2s,那么就算是最大的500*500的矩阵,我横着竖着扫一遍也才250000的运算量,完全无压力,所以直接暴力就行了。
代码如下:
#include<stdio.h>
long long G[505][505];
int main()
{
int n,i,j,row,column,sw=1;
int mark[505]={0};
long long sum,tsum;
scanf("%d",&n);
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
{
scanf("%I64d",&G[i][j]);
if(G[i][j] == 0)
{
row = i;
column = j;
}
}
if(n == 1)
printf("1\n");
else
{
sum = 0;
tsum = 0;
if(column == 1)
{
for(i=1;i<=n;i++)
sum+=G[i][2];
mark[2]=1;
}
else
{
for(i=1;i<=n;i++)
sum+=G[i][1];
mark[1]=1;
}
for(i=1;i<=n;i++)
{
tsum+=G[i][column];
mark[column]=1;
}
G[row][column] = sum - tsum;
if(G[row][column] <= 0)
{
printf("-1\n");
sw = 0;
}
if(sw)
for(i=1;i<=n;i++)//竖着
{
if(!mark[i])
{
tsum=0;
for(j=1;j<=n;j++)
tsum+=G[j][i];
if(tsum!=sum)
{
printf("-1\n");
sw=0;
break;
}
}
}
if(sw)//横着
{
for(i=1;i<=n;i++)
{
tsum=0;
for(j=1;j<=n;j++)
tsum+=G[i][j];
if(tsum!=sum)
{
printf("-1\n");
sw=0;
break;
}
}
}
if(sw)//斜着
{
tsum = 0;
for(i=1;i<=n;i++)
tsum += G[i][i];
if(tsum!=sum)
sw = 0;
for(i=1;i<=n;i++)
tsum -= G[i][n - i + 1];
if(tsum==0&&sw)
printf("%I64d\n",G[row][column]);
else
printf("-1\n");
}
}
}