https://loj.ac/problem/6001
原来还有这种操作。
这种最大权闭合子图问题的套路就是:
权值为正的,从源点向该点连一条流量为权值大小的边。
权值为负的,从该点向汇点连一条流量为权值大小的边。
原本的有关系的两个点之间连接一条流量为无穷大的边。
最后得到的最大收益 = 权值为正的点的权值之和 - 跑一遍网络流得到的最小割。
为什么会是这个结果呢?
1.如果每个方案的资金都是大于买仪器设备的花费的,那么很明显最小割就是仪器花费之和,我们直接用收益减去花费就是答案。
2.如果有的方案的资金是小于买仪器设备的花费的,我们直接来改改样例中的数据。
2 3
10 1 2
25 3
5 6 7
那么我们第一次用dinic找完最小割后,又会回到bfs,此时由于到达实验1的边流量为0,所以我们不会把实验1加入,
因为他的花费为11把他的流量全用完了,就不用他了。
然后第二个实验因为还有剩余流量,所以是要用上的。
那么再看看,我们得到的最小割大小为18,其中第一个实验的资金全部都用完了,其实撑死了也就是把实验一的资金用完了,我们用总的正的权值之和减去这个最小割,
不就相当于实验一没有参与吗?所以最后结果依然是实验二赚得钱。
3.如果有的方案的资金等于买仪器的花费的话。。。这就很尴尬了。按照上面的分析,我们是不会输出这种方案的。如果是要输出这种方案的话。。。我能想到的就是暴力先
看看这个方案是不是等于的,等于也记录一下。。。然而loj上没有这种数据就很happy
代码如下:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
const int maxn = 105;
const int maxm = 10005;
const int INF = 0x3f3f3f3f;
using namespace std;
bool vst[maxn];
inline int read()
{
int x=0,t=1,c;
while(!isdigit(c=getchar()))if(c=='-')t=-1;
while(isdigit(c))x=x*10+c-'0',c=getchar();
return x*t;
}
int head[maxn],cur[maxn],nx[maxm<<1],to[maxm<<1],flow[maxm<<1],ppp=2;
struct Dinic
{
int d[maxn];
int s,t;
long long ans;
void AddEdge(int u,int v,int c)
{
to[ppp]=v;flow[ppp]=c;nx[ppp]=head[u];head[u]=ppp++;swap(u,v);
to[ppp]=v;flow[ppp]=0;nx[ppp]=head[u];head[u]=ppp++;
}
bool BFS()
{
memset(d,-1,sizeof d);
memset(vst, 0, sizeof(vst));
d[s]=1;
vst[s] = 1;
queue<int> Q;
Q.push(s);
while(!Q.empty())
{
int x=Q.front();
Q.pop();
for(int i=head[x];i;i=nx[i])
{
if(flow[i] && d[to[i]]==-1)
{
vst[to[i]] = 1;
d[to[i]]=d[x]+1;
Q.push(to[i]);
}
}
}
return d[t]!=-1;
}
int DFS(int x,int maxflow)
{
if(x==t||!maxflow){
ans+=maxflow;
return maxflow;
}
int ret=0,f;
for(int &i=cur[x];i;i=nx[i])
{
if(d[to[i]]==d[x]+1&&(f=DFS(to[i],min(maxflow,flow[i]))))
{
ret+=f;
flow[i]-=f;
flow[i^1]+=f;
maxflow-=f;
if(!maxflow)
break;
}
}
return ret;
}
long long solve(int source,int tank)
{
s=source;
t=tank;
ans=0;
while(BFS())
{
// cout << "hello\n";
memcpy(cur,head,sizeof(cur));
DFS(s,INF);
}
return ans;
}
}dinic;
void mysolve(int m, int n) {
bool flag = 1;
for(int i = 1; i <= m; i++) {
if(vst[i]) {
if(flag) {
flag = 0;
printf("%d", i);
} else {
printf(" %d", i);
}
}
}
puts("");
flag = 1;
for(int i = m + 1; i <= m + n; i++) {
if(vst[i]) {
if(flag) {
flag = 0;
printf("%d", i - m);
} else {
printf(" %d", i - m);
}
}
}
puts("");
}
int main()
{
long long sum = 0;
int m=read(),n=read();
for(int i = 1; i <= m; i++)
{
int c=read();
dinic.AddEdge(0,i,c);
sum += c;
int t;
scanf("%d", &t);
dinic.AddEdge(i, m + t, INF);
char ch = getchar();
while(ch != '\n') {
scanf("%d", &t);
dinic.AddEdge(i, m + t, INF);
ch = getchar();
}
}
for(int i = 1; i <= n; i++) {
int t = read();
dinic.AddEdge(m + i, n + m + 1, t);
}
long long tmp = dinic.solve(0,n + m + 1);
mysolve(m, n);
printf("%lld\n", sum - tmp);
return 0;
}