LOJ 「SDOI2017」新生舞会(二分 + 分数规划+ 费用流)

点击打开链接

看到这题,首先看到,一对一,那么感觉是二分图?看了看数据,挺像的。

然后看到,原来是要一个C值最大。很典型的分数规划。我们转移一下就可以得到(a_1 - b_1 * c) + (a_2 - b_2 * c) + (a_3 - b_3 * c) + (a_4 - b_4 * c)....... = 0

所以我们只要去枚举c,然后不断让上式向着零趋近,最后输出即可。

当然,我们肯定不会去枚举的,先定一个区间,然后不断枚举c即可。

这个是一对一匹配,每条边是有权值的,如果想上二分图,就写KM算法。然后我并不会。。。所以用费用流代替是一个很好的选择。因为他是加法,所以我们应该是跑最长路,相当于把到达每个点的费用都累加起来,最后在汇点就得到了总共的费用了。

代码如下:

 

#include<bits/stdc++.h>
using namespace std;
#define eps 1e-10
const int maxn = 205;
const int maxm = 150 * 150 * 2;
const int INF = 0x3f3f3f3f;
int head[maxn], to[maxm], front[maxm], flow[maxm], ppp;
double cost[maxm], dis[maxn];
bool flag[maxn];
int minflow[maxn];
int n;
pair<int, int>par[maxn];

bool spfa(int s, int e)
{
	int u, v;
	for(int i = s; i <= e; i++)
		dis[i] = -INF;
	memset(flag, 0, sizeof(flag));
	dis[s] = 0;
	minflow[s] = INF;
	queue <int> q;
	q.push(s);
	while(!q.empty())
	{
		u = q.front();
		q.pop();
		flag[u] = 0;
		for(int i = head[u]; ~i; i = front[i])
		{
			v = to[i];
			if(flow[i] && dis[v] < dis[u] + cost[i])
			{
				dis[v] = dis[u] + cost[i];
				par[v] = (make_pair(u, i));
				minflow[v] = min(minflow[u], flow[i]);
				if(!flag[v])
				{
					flag[v] = 1;
					q.push(v);
				}
			}
		}
	}
	return dis[e] > -INF;
}

double Min_Cost_Max_Flow(int s, int e)
{
	double ans = 0;
	int p;
	while(spfa(s, e))
	{
		p = e;
		while(p != s)
		{
			flow[par[p].second] -= minflow[e];
			flow[par[p].second^1] += minflow[e];
			p = par[p].first;
		}
		ans += dis[e];
	}
	return ans;
}

void add_edge(int u, int v, int f, double c)
{
	to[ppp] = v;
	front[ppp] = head[u];
	flow[ppp] = f;
	cost[ppp] = c;
	head[u] = ppp++;
}

double a[maxn][maxn], b[maxn][maxn];
void init(double c) {
	memset(head, -1, sizeof(head));
	ppp = 0;
	for(int i = 1; i <= n; i++) {
		add_edge(0, i, 1, 0);
		add_edge(i, 0, 0, 0);
		add_edge(n + i, 2 * n + 1, 1, 0);
		add_edge(2 * n + 1, n + i, 0, 0);
	}
	for(int i = 1; i <= n; i++) {
		for(int j = 1; j <= n; j++) {
			add_edge(i, n + j, 1, a[i][j] - b[i][j] * c);
			add_edge(n + j, i, 0, -(a[i][j] - b[i][j] * c));
		}
	}
}

int main() {
//	freopen("in.txt", "r", stdin);
	cin >> n;
	for(int i = 1; i <=n; i++) {
		for(int j = 1; j <= n; j++) {
			cin >> a[i][j];
		}
	}
	for(int i = 1; i <= n; i++) {
		for(int j = 1; j <= n; j++) {
			cin >> b[i][j];
		}
	}
	
	double front = 0, back = 1e4;
	for(int i = 0; i < 100; i++) {
		double c = (front + back) / 2.0;
		init(c);
		double tmp = Min_Cost_Max_Flow(0, 2 * n + 1);
		if(tmp <= 0) {
			back = c;
		} else {
			front = c;
		}
	}
	printf("%6f\n", front);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值