题意和这个差不多http://blog.csdn.net/llzhh/article/details/77353532,只不过这道题改成棋盘上每个点的大小是0到k的。
建图什么的都一样,但是我发现我用一开始强联通的写法是过不去的,因为判环的地方tarjan是找极大强联通分量,这并不是我想要的,比如样例中一行四列那个。但是在上一题竟然过了。而且上一题没有判断行和列的和都相等也过了,数据实在是太水了。。。
这个判环我自己写了一个然后发现一直wa,到了下午突然发现,这都是源于多加了一个break。。。去掉就过了。。。一天又过去了。。。
判环我的方法是,dfs一下,每次进去都是在vst里面跑,如果发现某个点的vst已经标记,那么就返回1.否则我们在遍历完这个点后将他的标记擦去。这样还是怕超时,所以在外面再加上一个bvst,用于全局,如果这个点已经进去过就不再进去。。。具体还是看代码吧。。。
代码如下:
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1005;
const int maxm = maxn * maxn;
const int INF = 0x3f3f3f3f;
int n, m, k;
int head[maxn],cur[maxn],nx[maxm<<1],to[maxm<<1],flow[maxm<<1],ppp=0;
struct Dinic
{
int dis[maxn];
int s, t;
int ans;
void init() {
memset(head, -1, sizeof(head));
ppp = 0;
}
void AddEdge(int u, int v, int c)
{
to[ppp]=v;flow[ppp]=c;nx[ppp]=head[u];head[u]=ppp++;swap(u,v);
to[ppp]=v;flow[ppp]=0;nx[ppp]=head[u];head[u]=ppp++;
}
bool BFS()
{
memset(dis, -1, sizeof(dis));
dis[s] = 1;
queue<int> Q;
Q.push(s);
while(!Q.empty())
{
int x = Q.front();
Q.pop();
for(int i = head[x]; ~i; i = nx[i])
{
if(flow[i] && dis[to[i]] == -1)
{
dis[to[i]] = dis[x] + 1;
Q.push(to[i]);
}
}
}
return dis[t] != -1;
}
int DFS(int x, int maxflow)
{
if(x == t || !maxflow){
ans += maxflow;
return maxflow;
}
int ret = 0, f;
for(int &i = cur[x]; ~i; i = nx[i])
{
if(dis[to[i]] == dis[x] + 1 && (f = DFS(to[i], min(maxflow, flow[i]))))
{
ret += f;
flow[i] -= f;
flow[i^1] += f;
maxflow -= f;
if(!maxflow)
break;
}
}
return ret;
}
int solve(int source, int tank)
{
s = source;
t = tank;
ans = 0;
while(BFS())
{
memcpy(cur, head, sizeof(cur));
DFS(s, INF);
}
return ans;
}
}dinic;
bool vst[maxn], bvst[maxn];
bool dfs(int u, int pre) {
// cout << u << ' ' << pre << '\n';
for(int i = head[u]; ~i; i = nx[i]) {
int v = to[i];
if(v == pre || flow[i] == 0)
continue;
if(vst[v]) {
return 1;
}
vst[v] = 1;
bvst[v] = 1;
if(dfs(v, u)) {
vst[v] = 0;
return 1;
}
vst[v] = 0;
}
return 0;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
#endif
while(scanf("%d%d%d", &n, &m, &k) != EOF) {
int sum1 = 0, sum2 = 0;
dinic.init();
int s = n + m, t = s + 1;
for(int i = 0, tmp; i < n; i++) {
scanf("%d", &tmp);
dinic.AddEdge(s, i, tmp);
sum1 += tmp;
}
for(int i = 0, tmp; i < m; i++) {
scanf("%d", &tmp);
dinic.AddEdge(n + i, t, tmp);
sum2 += tmp;
}
int start = ppp;
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
dinic.AddEdge(i, n + j, k);
}
}
int ans = dinic.solve(s, t);
if(ans != sum1 || sum1 != sum2) {
printf("Impossible\n");
continue;
}
bool ok = 0;
memset(bvst, 0, sizeof(bvst));
for(int i = 0; i < n; i++) {
if(bvst[i])
continue;
// memset(vst, 0, sizeof(vst));
bvst[i] = 1;
vst[i] = 1;
if(dfs(i, i)) {
ok = 1;
}
vst[i] = 0;
}
if(ok)
printf("Not Unique\n");
else {
printf("Unique\n");
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
printf("%d%c", k - flow[start], j + 1 == m ? '\n' : ' ');
start += 2;
}
}
}
}
return 0;
}