这道题坑点还是有点烦的。完全是面向数据编程了。。。
解法:
核心就是最大化利用每个座位,所以尽量塞满。包括下面引入一个single,有1就肯定扔进去。
我是首先把每个部队里面的人数都处理到4一下(这个好处理,就是尽量塞满中间四人座,没有四人座就塞两边,这样保证塞的一定是满的)
然后将每个部队剩下的人数排序,从大到小往里面塞。
如果中间还有完全空闲的行
如果部队有三人,那就行数++。(放中间 或者是 两个二人座 是等效的)
如果有两人,那么就可以用一个single标记一下只可以塞一个人的个数++,行数++。(2已经是最多的部队了,所以最终还是要用中间一排的)
如果有一人,如果有single,最好肯定是用一个single(这样肯定是满的),如果没有single那就相当于坐了一个二人座,并且多出多一行二人座。(1已经是人数最多的部队了,那么最终还是要用中间一排的)
如果只剩下左边右边二人座了。
部队人数大于等于二,就用一个二人座。(这样肯定是满的)
如果有剩下一人,有single就用single(肯定是满座)如果没有,那就用二人座(都只剩下一个人的部队了,所以必须用二人座了,否则就不存在合理情况)
最后,已知每个部队还有多少人了,肯定没有一个的了,如果有三个的那就不可能产生single,所以也没有三个人的部队。只可能剩下两个的,此时连二人座都没有了,只能找single,判断一下single够不够用即可。
一直看看是否成立即可。
代码如下:
#include<bits/stdc++.h>
using namespace std;
int main() {
int n, k, left = 0, mid = 0, right = 0;
int a[105] = {0};
scanf("%d%d", &n, &k);
int lt = n, single = 0;
for(int i = 0; i < k; i++) {
scanf("%d", &a[i]);
}
int ans = 0;
for(int i = 0; i < k; i++) {
int tmp = min(a[i] / 4, n - mid);
a[i] -= tmp * 4;
mid += tmp;
while(a[i] >= 4) {
if(left < lt) {
a[i] -= 2;
left++;
} else if(right < n) {
a[i] -= 2;
right++;
} else {
ans = 1;
}
}
}
if(!ans) {
sort(a, a + k);
for(int i = k - 1; i >= 0; i--) {
if(a[i] <= 0)
break;
if(mid < n) {
if(a[i] == 1 && single)
single--;
else if(a[i] == 3)
mid++;
else if(a[i] == 2)
mid++, single++;
else if(a[i] == 1)
mid++, lt++;
a[i] = 0;
} else {
if(a[i] == 1 && single)
single--, a[i] -= 1;
else if(left < lt) {
left++, a[i] -= 2;
} else if(right < n){
right++, a[i] -= 2;
}
if(a[i] <= 0)
continue;
if(a[i] == 1 && single)
single--, a[i] -= 1;
else if(left < lt) {
left++, a[i] -= 2;
} else if(right < n){
right++, a[i] -= 2;
}
}
}
for(int i = 0; i < k; i++) {
if(a[i] > 0)
single -= a[i];
}
if(single < 0)
ans = 1;
}
if(ans)
cout << "NO" << '\n';
else
cout << "YES" << '\n';
return 0;
}