POJ 3155 Hard Life(最大密度子图)

详细解法参考胡伯涛的《最小割模型在信息学竞赛中的应用 》论文,下面做了一些注释,仅供参考。。。

代码如下:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
const int maxn = 1500;
const int maxm = 10000;
const double eps = 1e-6;
const int INF = 0x3f3f3f3f;
using namespace std;
inline int read()
{
	int x=0,t=1,c;
	while(!isdigit(c=getchar()))if(c=='-')t=-1;
	while(isdigit(c))x=x*10+c-'0',c=getchar();
	return x*t;
}

int n, m;
int head[maxn],cur[maxn],nx[maxm<<1],to[maxm<<1],ppp=0,thead[maxn];
double flow[maxm<<1];
struct Dinic {
	int dis[maxn];
	int s, t;
	double ans;
	
	void init() {
		memset(head, -1, sizeof(head));
		ppp = 0;
	}
	
	void AddEdge(int u, int v, double c)
	{
		to[ppp]=v;flow[ppp]=c;nx[ppp]=head[u];head[u]=ppp++;swap(u,v);
		to[ppp]=v;flow[ppp]=0;nx[ppp]=head[u];head[u]=ppp++;
	}
	
	bool BFS()
	{
		memset(dis, -1, sizeof(dis));
		dis[s] = 1; 
		queue<int> Q;
		Q.push(s);
		while(!Q.empty())
		{
			int x = Q.front();
			Q.pop();
			for(int i = head[x]; ~i; i = nx[i])
			{
				if(flow[i] > 0 && dis[to[i]] == -1)
				{
					dis[to[i]] = dis[x] + 1;
					Q.push(to[i]);
				}
			}
		}
		return dis[t] != -1;
	}
	
	double DFS(int x, double maxflow) {
		if(x == t || !maxflow){
			ans += maxflow;
			return maxflow;
		}
		double ret = 0;
		double f;
		for(int &i = cur[x]; ~i; i = nx[i]) {
			if(dis[to[i]] == dis[x] + 1 && (f = DFS(to[i], min(maxflow, flow[i])))) {
				ret += f;
				flow[i] -= f;
				flow[i^1] += f;
				maxflow -= f;
				if(!maxflow)
					break;
			}
		}
		return ret;
	}
	
	double solve(int source, int tank) {
		s = source;
		t = tank;
		ans = 0;
		while(BFS()) {
			memcpy(cur, head, sizeof(cur));
			DFS(s, INF);
		}
		return ans;
	}
}dinic;

int d[maxn], u[maxn], v[maxn], cnt; 
bool vst[maxn];

void build(double g) {
	dinic.init();
	int s = 0, t = n + 1;
	for(int i = 1; i <= n; i++) {
		dinic.AddEdge(s, i, m);
		dinic.AddEdge(i, t, m + 2 * g - d[i]);
	}
	for(int i = 1; i <= m; i++) {
		dinic.AddEdge(u[i], v[i], 1.0);
		dinic.AddEdge(v[i], u[i], 1.0);
	}
}

void find_dfs(int uu) {
	cnt++;
	vst[uu] = 1;
	for(int i = head[uu]; ~i; i = nx[i]) {
		int vv = to[i];
		if(flow[i] > eps && !vst[vv]) {
			find_dfs(vv);
		}
	}
}

int main() {
#ifndef ONLINE_JUDGE
	freopen("poj_in.txt", "r", stdin);
#endif
	n = read(), m = read();
	if(m == 0) {
		printf("1\n1\n");
		return 0;
	}
	for(int i = 1; i <= m; i++) {
		u[i] = read(), v[i] = read();
		d[u[i]]++, d[v[i]]++;
	}
	double front = 0, back = m;
	double e = 1.0 / n / n;     //引理4.1 无向图G中, 
	while(back - front >= e) {  //任意两个具有不同密度的子图G1,G2
		double g = (front + back) / 2.0;//它们的密度差不小于1/n/n 
		build(g);
		double tmp = dinic.solve(0, n + 1);
		if((n * m - tmp) / 2.0 > eps) //即使两边乘以-1,依然要趋于0 
			front = g;				//大于0说明g还不够大,使得tmp太小 
		else
			back = g;
	}
	build(front);     //得到比例后,重新建图 
	dinic.solve(0, n + 1);//没有流量的是红色的边 
	find_dfs(0);		//故判断某条边是否有流量 
	printf("%d\n", cnt - 1);//即可知道某点是否在集合中 
	for(int i = 1; i <= n; i++) {
		if(vst[i])
			printf("%d\n", i);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值