POJ 1815 Friendship (最小点割集/最小割)

题意:给出每个朋友之间的联系表,如果a联系b,b联系c,那么a是可以联系c的。问最少要去掉多少个朋友才能使得s无法和t联系上。如果有一样的方案输出字典序最小的。

解法:很像最小割有木有?但是这次不是边而是点,那么我们拆点不就好了。跑一次最大流发现一开始流量为f,那么我们从1到n枚举点,试着把第i个点删去看看流量是否有变化。如果有变化,说明第i个点在最小点割集里面。记录一下这个点,并且以后不再进入这个点,更新最大流量为此时的流量。不断循环即可。

要特判如果s到t本身就有边输出no answer。

代码如下:

#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
#include<utility>
#include<stack>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<map>
using namespace std;

const int maxn = 400 + 5;
const int maxm = 1e5 + 5;
const int INF = 0x3f3f3f3f;

inline int read() {
	int x=0,t=1,c;
	while(!isdigit(c=getchar()))if(c=='-')t=-1;
	while(isdigit(c))x=x*10+c-'0',c=getchar();
	return x*t;
}
int head[maxn],cur[maxn],nx[maxm<<1],to[maxm<<1],flow[maxm<<1],ppp=0;
int ban, vst[maxn], n, s, t;
bool G[maxn][maxn];

struct Dinic {
	int dis[maxn];
	int s, t;
	long long ans;
	
	void init() {
		memset(head, -1, sizeof(head));
		ppp = 0;
	}
	
	void AddEdge(int u, int v, int c) {
		to[ppp]=v;flow[ppp]=c;nx[ppp]=head[u];head[u]=ppp++;swap(u,v);
		to[ppp]=v;flow[ppp]=0;nx[ppp]=head[u];head[u]=ppp++;
	}
	
	bool BFS() {
		memset(dis, -1, sizeof(dis));
		dis[t] = 1; 
		queue<int> Q;
		Q.push(t);
		while(!Q.empty()) {
			int x = Q.front();
			Q.pop();
			for(int i = head[x]; ~i; i = nx[i]) {
				if(to[i] == ban * 2 || to[i] == ban * 2 + 1 || vst[to[i]])
					continue;
				if(flow[i^1] && dis[to[i]] == -1) {
					dis[to[i]] = dis[x] + 1;
					Q.push(to[i]);
				}
			}
		}
		return dis[s] != -1;
	}
	
	int DFS(int x, int maxflow) {
		if(x == t || !maxflow){
			ans += maxflow;
			return maxflow;
		}
		int ret = 0, f;
		for(int &i = cur[x]; ~i; i = nx[i]) {
			if(dis[to[i]] == dis[x] - 1 && (f = DFS(to[i], min(maxflow, flow[i])))) {
				ret += f;
				flow[i] -= f;
				flow[i^1] += f;
				maxflow -= f;
				if(!maxflow)
					break;
			}
		}
		return ret;
	}
	
	long long solve(int source, int tank) {
		s = source;
		t = tank;
		ans = 0;
		while(BFS()) {
			memcpy(cur, head, sizeof(cur));
			DFS(s, INF);
		}
		return ans;
	}
}dinic;

vector <int> vec;

void build() {
	dinic.init();
	for(int i = 1; i <= n; i++) {
		for(int j = 1; j <= n; j++) {
			if(G[i][j] && i != j)
				dinic.AddEdge(i * 2 + 1, j * 2, 1);
		}
	}
	for(int i = 1; i <= n; i++) {
		dinic.AddEdge(i * 2, i * 2 + 1, 1);
	}
	dinic.AddEdge(s * 2, s * 2 + 1, INF);
	dinic.AddEdge(t * 2, t * 2 + 1, INF);
}

int main() {
#ifndef ONLINE_JUDGE
	freopen("in.txt", "r", stdin);
//    freopen("out.txt", "w", stdout);
#endif
	dinic.init();
	n = read(), s = read(), t = read();
	for(int i = 1; i <= n; i++) {
		for(int j = 1; j <= n; j++) {
			int tmp = read();
			G[i][j] = tmp;
			if(tmp && i != j) {
				dinic.AddEdge(i * 2 + 1, j * 2, 1);
			}
		}
	} 
	for(int i = 1; i <= n; i++) {
		dinic.AddEdge(i * 2, i * 2 + 1, 1);
	}
	dinic.AddEdge(s * 2, s * 2 + 1, INF);
	dinic.AddEdge(t * 2, t * 2 + 1, INF);
	ban = -10;
	long long Min_flow = dinic.solve(s * 2, t * 2 + 1);
//	cout << Min_flow << '\n';
	for(int i = 1; i <= n; i++) {
		if(i != s && i != t) {
			ban = i;
			build();
			long long tmp = dinic.solve(s * 2, t * 2 + 1);
//			cout << "i is " << i << " tmp is " << tmp << '\n';
			if(tmp != Min_flow) {
				vec.push_back(i);
				vst[i * 2] = 1;
				vst[i * 2 + 1] = 1;
				Min_flow = tmp;
			}
		}
	}
	if(G[s][t]) {
		printf("NO ANSWER!");
	} else {
		cout << vec.size() << '\n';
		for(int i = 0; i < vec.size(); i++)
			printf("%d%c", vec[i], i + 1 == vec.size() ? '\n' : ' ');
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值