Uvalive 7037 The Problem Needs 3D Arrays (最大密集子图)

题意:给出一些数字,找出逆序对。令 逆序对的个数/数字个数 最大。

解法:我们先将逆序对用线标出来,然后就会发现这就是 边的数量 / 点的数量。这就是图的密度的定义。找最大密度则是用最大密集子图。求最大密集子图的方法见《最小割模型在信息学竞赛中的应用》。

代码如下:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
const int maxn = 110;
const int maxm = 1e6 + 5;
const double eps = 1e-7;
const int INF = 0x3f3f3f3f;
using namespace std;

int n, m;
int head[maxn],cur[maxn],nx[maxm<<1],to[maxm<<1],ppp=0,thead[maxn];
double flow[maxm<<1];
struct Dinic {
	int dis[maxn];
	int s, t;
	double ans;
	
	void init() {
		memset(head, -1, sizeof(head));
		ppp = 0;
	}
	void AddEdge(int u, int v, double c) {
		to[ppp]=v;flow[ppp]=c;nx[ppp]=head[u];head[u]=ppp++;swap(u,v);
		to[ppp]=v;flow[ppp]=0;nx[ppp]=head[u];head[u]=ppp++;
	}
	bool BFS() {
		memset(dis, -1, sizeof(dis));
		dis[t] = 1; 
		queue<int> Q;
		Q.push(t);
		while(!Q.empty()) {
			int x = Q.front();
			Q.pop();
			for(int i = head[x]; ~i; i = nx[i]) {
				if(flow[i^1] > 0 && dis[to[i]] == -1) {
					dis[to[i]] = dis[x] + 1;
					Q.push(to[i]);
				}
			}
		}
		return dis[s] != -1;
	}
	
	double DFS(int x, double maxflow) {
		if(x == t || !maxflow){
			ans += maxflow;
			return maxflow;
		}
		double ret = 0, f;
		for(int &i = cur[x]; ~i; i = nx[i]) {
			if(dis[to[i]] == dis[x] - 1 && (f = DFS(to[i], min(maxflow, flow[i])))) {
				ret += f;
				flow[i] -= f;
				flow[i^1] += f;
				maxflow -= f;
				if(!maxflow)
					break;
			}
		}
		return ret;
	}
	
	double solve(int source, int tank) {
		s = source;
		t = tank;
		ans = 0;
		while(BFS()) {
			memcpy(cur, head, sizeof(cur));
			DFS(s, INF);
		}
		return ans;
	}
}dinic;

int deg[maxn], u[maxm], v[maxm], a[maxn]; 

void build(double g) {
	dinic.init();
	int s = 0, t = n + 1;
	for(int i = 1; i <= n; i++) {
		dinic.AddEdge(s, i, m);
		dinic.AddEdge(i, t, m + 2 * g - deg[i]);
	}
	for(int i = 1; i <= m; i++) {
		dinic.AddEdge(u[i], v[i], 1.0);
		dinic.AddEdge(v[i], u[i], 1.0);
	}
}

int main() {
#ifndef ONLINE_JUDGE
	freopen("in.txt", "r", stdin);
#endif
	int T, Case = 1;
	scanf("%d", &T);
	while(T--) {
		memset(deg, 0, sizeof(deg));
		scanf("%d", &n);
		m = 0;
		for(int i = 1; i <= n; i++)
			scanf("%d", &a[i]);
		for(int i = 1; i <= n; i++) {
			for(int j = i + 1; j <= n; j++) {
				if(a[i] > a[j]) {
					m++;
					u[m] = i, v[m] = j;
					deg[i]++, deg[j]++;
				}
			}
		}
//		if(m == 0) {
//			printf("Case #%d: %.12f\n", Case++, 1.0);
//			continue;
//		}
		double front = 0, back = m;
		double e = 1.0 / n / n;     //引理4.1 无向图G中
		while(back - front > eps) {  //任意两个具有不同密度的子图G1,G2
			double g = (front + back) / 2.0;//它们的密度差不小于1/n/n 
			build(g);
			double tmp = dinic.solve(0, n + 1);
			if(n * m - tmp > eps) //即使两边乘以-1,依然要趋于0 
				front = g;				//大于0说明g还不够大,使得tmp太小 
			else
				back = g;
		}
		printf("Case #%d: %.12f\n", Case++, front);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值