旺店通ERP集成用友NC(旺店通主供应链)

源系统成集云目标系统

用友NC介绍

用友NC是用友NC产品的全新系列,是面向集团企业的世界级高端管理软件。它以“全球化集团管控、行业化解决方案、全程化电子商务、平台化应用集成”的管理业务理念而设计,采用J2EE架构和先进开放的集团级开发平台UAP,形成了集团管控8大领域15大行业68个细分行业的解决方案,是中国大企业集团管理信息化应用系统的首选。

旺店通介绍

旺店通ERP系统是一款专门为电商企业量身定制的SaaS管理软件,旨在提供专业的电子商务ERP解决方案。该系统涵盖了电商订单管理、仓储管理、WMS仓储管理系统、CRM客户管理系统、网店系统等模块,帮助电商企业实现线上电商、网店以及线下实体店进销存管理及wms仓储管理系统的全面覆盖。

业务流程

对接说明

旺店通ERP完成所有供应链业务单向同步到用友NC进行成本核算和生成财务凭证

  1. 旺店通ERP商品数据同步至用友NC商品档案
  2. 旺店通ERP供应商数据同步至用友NC供应商档案
  3. 旺店通ERP店铺数据同步至用友NC客户档案
  4. 旺店通ERP仓库数据同步至用友NC仓库档案
  5. 旺店通ERP采购入库单、采购退货单同步至用友NC采购入库单、采购退货单
  6. 旺店通ERP销售出库单同步至用友NC销售出库单
  7. 旺店通ERP售后单据分为发货和退货两种类型,判断为退货状态数据同步至用友NC销售退货单,判断为发货状态数据同步至其他出库单
  8. 旺店通ERP其它入库单同步至用友NC其它入库单
  9. 旺店通ERP其他出库单同步至用友NC其他出库单
  10. 旺店通ERP调拨单同步至用友NC调拨单
实施步骤

登录成集云数据集成平台-任务管理

  • 输入注册时填写的手机号和密码后,根据提示输入验证码即可点击登录进入系统
  • 也可以点击右上角二维码图片进入二维码扫码绑定微信用户登录更加安全

  • 创建任务,选择任务类型为API集成

  • 选择源系统连接器为用友NC,并配置相关授权参数

  • 选择模板系统连接为旺店通ERP,并配置相关授权参数
  • 设置集成同步的对接策略为 10分钟/次。
集成价值
  1. 数据集成:将用友NC与旺店通ERP进行集成,可以打通双方的数据壁垒,实现数据的共享和同步更新。这有助于提高数据的准确性和实时性,避免数据孤岛和重复录入的问题。
  2. 业务协同:通过集成,可以实现两个系统之间的业务协同,例如在销售订单、采购订单、库存管理等业务环节实现无缝衔接。这可以提高业务处理的效率和准确性,降低出错率,减少沟通成本。
  3. 报表分析:用友NC与旺店通ERP的集成可以提供更全面的报表分析功能,可以结合两个系统的数据生成更详细的报表,例如销售分析、库存分析、进销存统计等。这有助于企业更全面地了解自身业务情况,为决策提供更有价值的信息。
  4. 精细化管理:通过旺店通ERP与用友NC的集成,企业可以实现更精细化的管理,例如通过用友NC的B2B、B2C管理方式支持企业经销商自助下单订货,实现更精细化的销售和库存管理。
  5. 提高工作效率:通过集成,可以实现两个系统的自动化和智能化,减少人工干预和重复性工作,提高工作效率。

综上所述,用友NC与旺店通ERP集成可以为企业带来更高效、准确、精细化的管理,提高工作效率和决策支持能力。同时也可以避免重复投资和资源浪费,实现资源的有效利用。

  • 17
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生阶段,主要用于生潜在的目标候选框(Bounding-box proposals)。这个阶段常使用卷积神经网络(CNN)从输入图像中提取特征,然后过一些技巧(如选择性搜索)来生候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农文哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值