(转)Uva 1306 The K-League --- ISAP

网络流。枚举每个队夺冠。设win为夺冠赢得场数,那么显然别的队赢得次数都不能超过win。于是我们可以从源点s向每个队u(除了当前枚举的队)加边,容量为win-w[i],即该队还能赢多少场,然后再从从该队向节点(u,v)连边,容量为a[u][v]表示u和v比最多赢a[u][v]场,最后从节点(u, v) 向汇点t连边,容量为a[u][v],表示这个节点最多能产生a[u][v]场胜利。如果最大流等于所有的a[u][v]之和的话,就表示可以满足。

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<stack>
#include<cmath>
#include<set>
#include<map>
#define LL long long
#define CLR(a, b) memset(a, b, sizeof(a))
 
using namespace std;
const int maxn = 1100;
const int INF = 0x3f3f3f3f;
struct Edge
{
    int from, to, cap, flow;
    Edge() {}
    Edge(int from, int to, int cap, int flow)
        :from(from), to(to), cap(cap), flow(flow) {}
};
 
struct ISAP
{
    int n, m, s, t;
    vector<Edge> edges;
    vector<int> G[maxn];
    bool vis[maxn];
    int d[maxn], cur[maxn];
    int p[maxn], num[maxn];
 
    void ClearAll(int n)
    {
        this->n = n;
        for(int i = 0; i < n; i ++) G[i].clear();
        edges.clear();
    }
 
    void ClearFlow()
    {
        for(int i = 0; i < edges.size(); i ++)
            edges[i].flow = 0;
    }
    void AddEdge(int from, int to, int cap)
    {
        edges.push_back(Edge(from, to, cap, 0));
        edges.push_back(Edge(to, from, 0, 0));
        m = edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }
 
    bool BFS()
    {
        CLR(vis, false);
        queue<int> Q;
        Q.push(t);
        vis[t] = 1; d[t] = 0;
        while(!Q.empty())
        {
            int x = Q.front(); Q.pop();
            for(int i = 0; i < G[x].size(); i ++)
            {
                Edge& e = edges[G[x][i]^1];
                if(!vis[e.from] && e.cap > e.flow)
                {
                    vis[e.from] = true;
                    d[e.from] = d[x] + 1;
                    Q.push(e.from);
                }
            }
        }
        return vis[s];
    }
 
    int Augment()
    {
        int x = t, a = INF;
        while(x != s)
        {
            Edge& e = edges[p[x]];
            a = min(a, e.cap-e.flow);
            x = edges[p[x]].from;
        }
        x = t;
        while(x != s)
        {
            edges[p[x]].flow += a;
            edges[p[x]^1].flow -= a;
            x = edges[p[x]].from;
        }
        return a;
    }
 
    int Maxflow(int s, int t, int limit)
    {
        this->s = s; this->t = t;
        int flow = 0;
        BFS();CLR(num, 0);
        for(int i = 0; i < n; i ++) num[d[i]] ++;
        int x = s;
        CLR(cur, 0);
        while(d[s] < n)
        {
            if(x == t)
            {
                flow += Augment();
                if(flow >= limit) return flow;
                x = s;
            }
            int ok = 0;
            for(int i = cur[x]; i < G[x].size(); i ++)
            {
                Edge& e = edges[G[x][i]];
                if(e.cap > e.flow && d[x] == d[e.to] + 1)
                {
                    ok = 1;
                    p[e.to] = G[x][i];
                    cur[x] = i;
                    x = e.to;
                    break;
                }
            }
            if(!ok)
            {
                int m = n - 1;
                for(int i = 0; i < G[x].size(); i ++)
                {
                    Edge& e = edges[G[x][i]];
                    if(e.cap > e.flow) m = min(m, d[e.to]);
                }
                if(-- num[d[x]] == 0) break;
                num[d[x] = m + 1] ++;
                cur[x] = 0;
                if(x != s) x = edges[p[x]].from;
            }
        }
        return flow;
    }
 
    void Reduce()
    {
        for(int i = 0; i < edges.size(); i ++)
            edges[i].cap -= edges[i].flow;
    }
    vector<int> Mincut()
    {
        vector<int> ans;
        BFS();
        for(int i = 0; i < edges.size(); i ++)
        {
            Edge e = edges[i];
            if(!vis[e.from] && vis[e.to] && e.cap > 0) ans.push_back(i);
        }
        return ans;
    }
} sol;
 
int a[30][30], w[30], d[30];
vector<int> ans;
 
int main()
{
    int T, n;
    scanf("%d", &T);
    while(T --)
    {
        scanf("%d", &n);
        for(int i = 0; i < n; i ++)
        {
            scanf("%d%d", &w[i], &d[i]);
        }
        for(int i = 0; i < n; i ++)
            for(int j = 0; j < n; j ++)
                scanf("%d", &a[i][j]);
        ans.clear();
        for(int i = 0; i < n; i ++)
        {
            sol.ClearAll(n + n * n + 2);
            int s = n + n * n, t = s + 1;
            int win = w[i], tot = 0;bool flag = true;
            for(int j = 0; j < n; j ++) win += a[i][j];
            for(int j = 0; j < n; j ++) if(j != i)
            {
                if(win - w[j] < 0)
                {
                    flag = false;break;
                }
                sol.AddEdge(s, j, win - w[j]);
                for(int k = 0; k < j; k ++) if(k != i)
                {
                    sol.AddEdge(j, j * n + k, a[j][k]);
                    sol.AddEdge(k, j * n + k, a[j][k]);
                    sol.AddEdge(j * n + k, t, a[j][k]);
                    tot += a[j][k];
                }
            }
            if(!flag) continue;
            if(sol.Maxflow(s, t, INF) == tot)
                ans.push_back(i + 1);
        }
        for(int i = 0; i < ans.size(); i ++)
            printf("%d%c", ans[i], i == ans.size() - 1 ? '\n' : ' ');
    }
}

————————————————
版权声明:本文为CSDN博主「ok_again」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/ok_again/article/details/22422635

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值