HDOJ1222 Wolf and Rabbit -欧几里得算法+数论结论

这个题几个月前做过一次,这次复习下。。

题目链接

题目大意:有n个洞,编号0到n-1,洞按逆时针排列,一只狼第一次进0号洞,第二次进m%n号洞,第三次进2m%n号洞...

狼永远也不会进入的洞是安全洞,问存不存在安全洞。

以前做这题的时候才知道数论里有个结论,n和m互质的时候所有的洞都可以遍历到,即不存在安全洞,n和m不互质一定有洞遍历不到。 

证明:

设可以到达的位置为pos,假定存在整数x,y,使得 m*x + n*y = pos,

(pos必须是gcd(m,n)倍数方程才有解,这个叫裴蜀定理,)

①如果m,n不互质,则gcd(m,n)>1,则pos为1的时候无解。

②如果m,n互质,则gcd(m,n)==1,因为pos=0,1,2...n-1,所以必有解

代码:

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
int gcd(int a,int b){			//最大公因数 
	if(b == 0)
		return a;			
	return gcd(b,a%b);
}


int main(){
	int t;
	scanf("%d",&t);
	int n,m;
	while(t--){
		scanf("%d%d",&n,&m);
		int result = gcd(n,m);
		if(result == 1){
			printf("NO\n");
		}else{
			printf("YES\n");
		}
		
	}
	
	
	return 0;
}

阅读更多
文章标签: 欧几里得算法
个人分类: 数论
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭