HDOJ2018 母牛的故事 ----- 斐波拉契数列变形

题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=2018

Problem Description

有一头母牛,它每年年初生一头小母牛。每头小母牛从第四个年头开始,每年年初也生一头小母牛。请编程实现在第n年的时候,共有多少头母牛?

 

 

Input

输入数据由多个测试实例组成,每个测试实例占一行,包括一个整数n(0<n<55),n的含义如题目中描述。
n=0表示输入数据的结束,不做处理。

 

 

Output

对于每个测试实例,输出在第n年的时候母牛的数量。
每个输出占一行。

 

 

Sample Input

 

2 4 5 0

 

 

Sample Output

 

2 4 6

 

题解:

先写前几项观察下: 1,2,3,4,6.....

结论是f(n) = f(n-1) + f(n-3);

好吧,其实刚开始时我并没有直接观察出这个公式。

但是没关系,可以比较容易地推算出来:

从式子可以看出,x年新增的母牛在x+3年时有生育能力,可以从x+3年起,每年生一头牛。

那么第x年的母牛数量,等于 前一年的母牛数量 + 第x年新出生的母牛数量,

前一年的母牛,假设有i只在x年有生育能力,那么就可以在x年出生i只小母牛,剩下的就没法生了。

前一年(x-1)的母牛数量为f(x-1),

那前一年母牛中能在x年生小牛的有多少只呢?

容易想到,在第x年时可以生出小牛的母牛,最迟也是x-3年时出生的,

所以这样的母牛数量是f(x-3),

所以答案是f(x) = f(x-1) + f(x-3).

    #include <cstdio>
    using namespace std;
    int f[100] = {0,1,2,3,4,6};
    
    
    int main()
    {
        int n;
        for(int i = 6;i <= 55;i++) {
            f[i] = f[i-1] + f[i-3];
        }
        
        while(scanf("%d",&n) != EOF) {
            if(n == 0)    
                break;
            printf("%d\n",f[n]);
            
        }
        
        return 0;
    } 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值