题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=2018
Problem Description
有一头母牛,它每年年初生一头小母牛。每头小母牛从第四个年头开始,每年年初也生一头小母牛。请编程实现在第n年的时候,共有多少头母牛?
Input
输入数据由多个测试实例组成,每个测试实例占一行,包括一个整数n(0<n<55),n的含义如题目中描述。
n=0表示输入数据的结束,不做处理。
Output
对于每个测试实例,输出在第n年的时候母牛的数量。
每个输出占一行。
Sample Input
2 4 5 0
Sample Output
2 4 6
题解:
先写前几项观察下: 1,2,3,4,6.....
结论是f(n) = f(n-1) + f(n-3);
好吧,其实刚开始时我并没有直接观察出这个公式。
但是没关系,可以比较容易地推算出来:
从式子可以看出,x年新增的母牛在x+3年时有生育能力,可以从x+3年起,每年生一头牛。
那么第x年的母牛数量,等于 前一年的母牛数量 + 第x年新出生的母牛数量,
前一年的母牛,假设有i只在x年有生育能力,那么就可以在x年出生i只小母牛,剩下的就没法生了。
前一年(x-1)的母牛数量为f(x-1),
那前一年母牛中能在x年生小牛的有多少只呢?
容易想到,在第x年时可以生出小牛的母牛,最迟也是x-3年时出生的,
所以这样的母牛数量是f(x-3),
所以答案是f(x) = f(x-1) + f(x-3).
#include <cstdio>
using namespace std;
int f[100] = {0,1,2,3,4,6};
int main()
{
int n;
for(int i = 6;i <= 55;i++) {
f[i] = f[i-1] + f[i-3];
}
while(scanf("%d",&n) != EOF) {
if(n == 0)
break;
printf("%d\n",f[n]);
}
return 0;
}