HDOJ3790 最短路径问题 --- SPFA算法求多关键字最短路

题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=3790

Problem Description

给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。

 

 

Input

输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)

 

 

Output

输出 一行有两个数, 最短距离及其花费。

 

 

Sample Input


 

3 2 1 2 5 6 2 3 4 5 1 3 0 0

 

 

Sample Output


 

9 11

题解:

SPFA算法是西南交通大学计算机学院段凡丁院长提出,相当于是Bellman-ford算法的优化。

在SPFA中,先将起点入队列,一个while循环取出队首元素,找出与其邻接的节点,判断是否能够松弛,如果可以松弛,就更新最短路,并将其入队。最终可以计算出单源最短路径(如果一个节点入队超过N次,则说明不存在最短路,即有负权回路,N为节点个数)。

SPFA通常采用邻接表,此题有2个关键字:路径长度和花费。  只需要在判断松弛条件的时候改变下就行,如果松弛后的长度和不松弛相等,就判断两种情况下的花费,如果松弛后的花费可以更小,则松弛节点。

另外需要额外一个数组记录下所有节点当前最小花费。

#include <cstdio>
#include <algorithm>
#include <vector>
#include <cstring>
#include <queue>
#define INF 0x3fffffff
using namespace std;
int n,m;
int s,t;
struct Node {
    int to,weight,cost;
    void set(int a,int b,int c) {
        to = a,weight = b,cost = c;
    }
}node[200010];
struct Point {
    int dis,cost;
}point[1010];
int cur;
vector<Node> vec[1010];
queue<int> q;

// SPFA最短路径
void SPFA() {
    q.push(s);
    int temp;
    int cnt;
    while(!q.empty()) {
        temp = q.front();
        q.pop();
        // 遍历周围的点
        cnt = vec[temp].size();
        for(int i = 0;i < cnt;i++) {
            int to = vec[temp][i].to;
            int weight = vec[temp][i].weight;
            int cost = vec[temp][i].cost;
            // 判断是否需要松弛
            if(point[to].dis > point[temp].dis + weight) {
                point[to].dis = point[temp].dis + weight;
                point[to].cost = point[temp].cost + cost;
                q.push(to);
            } else if((point[to].dis == point[temp].dis + weight) && (point[to].cost > point[temp].cost + cost) ) {
                point[to].cost = point[temp].cost + cost;
                q.push(to);
            }
        }
    }
    printf("%d %d\n",point[t].dis,point[t].cost);
}

int main() {
    while(scanf("%d%d",&n,&m) != EOF) {
        if(n == 0 && m == 0) break;
        memset(vec,0,sizeof(vec));
        while(!q.empty())
            q.pop();
        cur = 0;
        //vec.clear();
        for(int i = 1;i <= n;i++) {
            point[i].dis = INF;
            point[i].cost = INF;
        }
        int a,b,c,d;
        for(int i = 0;i < m;i++) {
            scanf("%d%d%d%d",&a,&b,&c,&d);
            node[cur].set(b,c,d);
            vec[a].push_back(node[cur]);
            cur++;
            node[cur].set(a,c,d);
            vec[b].push_back(node[cur]);
            cur++;
        }
        scanf("%d%d",&s,&t);
        point[s].dis = 0;
        point[s].cost = 0;
        SPFA();
    }
    
    return 0;
}

 

阅读更多
换一批

没有更多推荐了,返回首页