codeforces Round #260(div2) E解题报告

E. Civilization
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Andrew plays a game called "Civilization". Dima helps him.

The game has n cities and m bidirectional roads. The cities are numbered from 1 to n. Between any pair of cities there either is a single (unique) path, or there is no path at all. A path is such a sequence of distinct cities v1, v2, ..., vk, that there is a road between any contiguous cities vi and vi + 1 (1 ≤ i < k). The length of the described path equals to (k - 1). We assume that two cities lie in the same region if and only if, there is a path connecting these two cities.

During the game events of two types take place:

  1. Andrew asks Dima about the length of the longest path in the region where city x lies.
  2. Andrew asks Dima to merge the region where city x lies with the region where city y lies. If the cities lie in the same region, then no merging is needed. Otherwise, you need to merge the regions as follows: choose a city from the first region, a city from the second region and connect them by a road so as to minimize the length of the longest path in the resulting region. If there are multiple ways to do so, you are allowed to choose any of them.

Dima finds it hard to execute Andrew's queries, so he asks you to help him. Help Dima.

Input

The first line contains three integers nmq (1 ≤ n ≤ 3·1050 ≤ m < n1 ≤ q ≤ 3·105) — the number of cities, the number of the roads we already have and the number of queries, correspondingly.

Each of the following m lines contains two integers, ai and bi (ai ≠ bi; 1 ≤ ai, bi ≤ n). These numbers represent the road between cities aiand bi. There can be at most one road between two cities.

Each of the following q lines contains one of the two events in the following format:

  • 1 xi. It is the request Andrew gives to Dima to find the length of the maximum path in the region that contains city xi (1 ≤ xi ≤ n).
  • 2 xi yi. It is the request Andrew gives to Dima to merge the region that contains city xi and the region that contains city yi (1 ≤ xi, yi ≤ n). Note, that xi can be equal to yi.
    Output

    For each event of the first type print the answer on a separate line.

    Sample test(s)
    input
    6 0 6
    2 1 2
    2 3 4
    2 5 6
    2 3 2
    2 5 3
    1 1
    
    output
    4

    题目大意:

    给出N个点,里面有m条边,且不会构成环,如若两个点有可以连起来的路径,则认为是同一个区域,现在要求完成2个基本操作:1. 合并 2. 求该区域内最长的路径

    解法:

    第一问题考并查集,第二个问题考求树的直径。

    代码:

    #include <cstdio>
    #include <vector>
    #define N_max 3*123456
    
    using namespace std;
    
    int n, m, q, depth, depv;
    int fa[N_max], ans[N_max];
    vector <int> G[N_max];
    
    int find(int x) {
    	if (fa[x] != x) 
    		return fa[x] = find(fa[x]);
    	else
    		return x;
    }
    
    void un(int x,int y) {
    	x = find(x);
    	y = find(y);
    
    	if (x != y)  fa[x] = y;
    }
    
    void dfs(int u, int pre, int d) {
    	if (d > depth) {
    		depth = d;
    		depv = u;
    	}
    
    	for (int i = 0; i < G[u].size(); i++)
    		if (G[u][i] != pre)
    			dfs(G[u][i], u, d+1);
    }
    
    void addedge(int x, int y) {
    	G[x].push_back(y);
    }
    
    void init() {
    	scanf("%d%d%d", &n, &m, &q);
    
    	for (int i = 1; i <= n; i++)  fa[i] = i;
    
    	for (int i = 1; i <= m; i++) {
    		int tmpx, tmpy;
    		scanf("%d%d", &tmpx, &tmpy);
    
    		addedge(tmpx, tmpy);
    		addedge(tmpy, tmpx);
    		un(tmpx, tmpy);
    	}
    
    	for (int i = 1; i <= n; i++) {
    		if (!ans[find(i)]) {
    			depth = 0;
    			depv = i;
    			dfs(i, 0, 0);
    
    			depth = 0;
    			dfs(depv, 0, 0);
    
    			ans[find(i)] = depth;
    		}
    	}
    }
    
    void solve() {
    	for (int i = 1; i <= q; i++) {
    		int typ;
    
    		scanf("%d", &typ);
    
    		if (typ == 1) {
    			int x;
    
    			scanf("%d", &x);
    			printf("%d\n", ans[find(x)]);
    		}
    		else {
    			int x, y;
    
    			scanf("%d%d", &x, &y);
    			if (find(x) != find(y)) {
    				int tmp = max(ans[find(x)], max(ans[find(y)], (ans[find(x)]+1)/2 + (ans[find(y)]+1)/2 +1));
    
    				un(x, y);
    				ans[find(x)] = tmp;
    			}
    		}
    	}
    }
    
    int main() {
    	init();
    	solve();
    }

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值