/*
* Copyright (c) 2011, 烟台大学计算机学院
* All rights reserved.
* 作 者:刘明亮
* 完成日期:2013年 3月 31日
* 版 本 号:v1.0
* 输入描述:
* 问题描述:略
* 程序输出:略
* 问题分析:
* 算法设计:略
*/
#include<iostream>
#include<cmath>
using namespace std;
class CFraction
{
private:
int nume; // 分子
int deno; // 分母
public:
void set(int nu,int de); //置值,改变值时用
void input(); //按照"nu/de"的格式,如"5/2"的形式输入
void simplify(); //化简(使分子分母没有公因子)
void amplify(int n); //放大n倍,如2/3放大5倍为10/3
void output(int style=0); //输出:以8/6为例,style为0时,原样输出8/6;
//style为1时,输出化简后形式4/3;
//style为2时,输出1(1/3)形式,表示一又三分之一;
//style为3时,用小数形式输出,如1.3333;
//不给出参数和非1、2、3,认为是方式0
};
int main()
{
CFraction cf;
int nu,de;
cf.set(nu,de);
cf.input();
cf.simplify();
cf.amplify(5);
cf.output(2);
cf.output();
return 0;
}
//置值,改变值时用
void CFraction::set(int nu,int de)
{
nume=nu;
deno=de;
}
//按照"nu/de"的格式,如"5/2"的形式输入
void CFraction::input()
{
char c;
cout<<"请输入分数(如:5/2):";
cin>>nume>>c>>deno;
if(c!='/' || deno==0)
{
cout<<"输入格式不对,请重新输入!"<<endl;
input();
}
}
//放大n倍,如2/3放大5倍为10/3
void CFraction::amplify(int n)
{
nume*=n;
cout<<"放大"<<n<<"倍后为:"<<nume<<"/"<<deno<<endl;
}
// 求m,n的最大公约数
int gcd(int m, int n)
{
int r;
if (m<n){r=m;m=n;n=r;}
while(r=m%n) // 求m,n的最大公约数
{
m=n;
n=r;
}
return n;
}
// 分数化简,使分子分母没有公因子
void CFraction::simplify()
{
int n=gcd(deno, nume);
deno/=n; // 化简
nume/=n;
cout<<"化简后为:"<<nume<<"/"<<deno<<endl;
}
//输出分数:以/6为例
//style为0时,原样输出8/6;
//style为1时,输出化简后形式4/3;
//style为2时,输出1(1/3)形式,表示一又三分之一;
//style为3时,用小数形式输出,如1.3333;
void CFraction::output(int style)
{
int n;
switch(style)
{
case 0:
cout<<"原样:" <<nume<<'/'<<deno<<endl;
break;
case 1:
n=gcd(deno, nume);
cout<<"化简形式: "<<nume/n<<'/'<<deno/n<<endl; //输出化简形式,并不是要化简
break;
case 2:
cout<<"带分数形式:" <<nume/deno<<'('<<nume%deno<<'/'<<deno<<')'<<endl;
break;
case 3:
cout<<"小数:" <<nume/double(deno)<<endl;
break;
default:
cout<<"默认原样:" <<nume<<'/'<<deno<<endl;
}
}
折腾分数
最新推荐文章于 2022-09-11 11:21:30 发布