vscode 安装/启用建议的扩展Python + Jupyter

当这一行出现安装/启用建议的扩展Python + Jupyter在这里插入图片描述

当你直接点击无法安装python和jupyter

请看下图解决

在这里插入图片描述
点击python安装完 再次搜索jupyter安装
在这里插入图片描述

### 安装和配置 Jupyter 支持在 VS Code 中 为了在 Visual Studio Code (VS Code) 中安装并配置 Jupyter Notebook 的支持,可以按照以下方法操作: #### 1. 安装 Python 扩展 确保已安装 Microsoft 提供的官方 **Python 扩展**。此扩展集成了对 Jupyter Notebooks 和交互式窗口的支持[^4]。 可以通过打开 VS Code 的扩展市场 (`Ctrl+Shift+X`) 并搜索 `Python` 来找到该扩展。单击“安装”按钮完成安装过程。 #### 2. 配置设置文件 编辑 VS Code 的全局或工作区级别的设置文件以启用 Jupyter 功能。具体来说,在 `settings.json` 文件中添加如下内容来指定默认使用Jupyter 路径以及内核选项: ```json { "jupyter.serverRunningTimeout": 60000, "jupyter.kernelSpecs": [ { "name": "python3", "language": "python" } ] } ``` 上述 JSON 片段设置了服务器启动超时时间为 60 秒,并定义了一个名为 `python3` 的内核规格用于处理 Python 编程语言的任务[^5]。 #### 3. 创建虚拟环境(可选) 如果希望隔离项目依赖关系,则建议创建一个新的 Python 虚拟环境。通过命令行执行以下指令即可实现这一点: ```bash python -m venv .venv source .venv/bin/activate pip install notebook ipykernel ipython kernel install --user --name=.venv ``` 这些步骤会建立一个新目录 `.venv` 存储所有必要的库副本;激活之后再安装必要模块如 `notebook`, `ipykernel` 等以便后续集成到 VS Code 当中去[^6]。 #### 4. 启动 Jupyter 笔记本或者交互式窗口 一旦完成了前面提到的各项准备工作,就可以直接利用内置功能开启新的笔记本文档(.ipynb),或者是切换至交互模式来进行实验性质的数据分析活动了。只需简单右键菜单选择新建项类型为 “Jupyter Notebook”,又或是按快捷方式组合键 Ctrl+K Shift+N 即可快速跳转进入相应视图区域[^7]。 ```python import pandas as pd dataframe = pd.DataFrame({'A': [1, 2], 'B': [3, 4]}) print(dataframe) ``` 以上代码片段展示了如何导入 Pandas 库并将数据放入 DataFrame 结构之中打印出来作为演示用途之一。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值