众所周知,数学建模的过程中,将复杂的数据和模型结果通过可视化图形呈现出来,不仅能够帮助我们更深入地理解问题,还能够有效地向评委展示我们的研究成果。
今天,承接《可视化代码2》,作者将与大家分享《可视化代码3》,此篇结束就完结撒花啦!!!内含3种强大的数学建模可视化图形及其在实际问题中的应用,包含以下图形:“回归误差线”、“冰柱图”、“树图”。
如果阅者喜欢此篇分享,认为内容精要、有用、好懂的话,请点赞收藏再走!!!(此为第三部分更新,是可视化模块的最后一部分更新)
1 误差限图:精确探索,用误差限映射数据的信心边界!
误差限图是在数据点上添加垂直线段来表示数据的变异性或不确定性,常用于展示每个数据点的误差范围或置信区间。这种图形有助于了解数据的可靠性,常见于科学实验和技术测量,使观察者能够一眼看出数据的稳定性和可信度。
import plotly.graph_objects as go
import numpy as np
def line_with_error(fig, x: list, y: list, lower: list,
upper: list, colors: list, name=None):
"""
绘制一条折线,并且填充误差限
:param fig: Figure实例
:param x: x坐标
:param y: 纵轴值
:param lower: 误差下限
:param upper: 误差上限
:param colors: 颜色,包括两个值:[折线颜色, 填充颜色]
:param name: 折线名称
"""
fig.add_trace(go.Scatter(
x=x, y=y, line={
'color': colors[0]}, name=name
))
fig.add_trace(go.Scatter(
x=x + x[::-1], y=upper + lower[::-1], fill='toself', fillcolor=colors[1],
line={
'color': 'rgba(255, 255, 255, 0)'}, showlegend=False, name=name
))
if __name__ == '__main__':
x = [1, 2, 3, 4,