dp专辑 U - Lawrence [ 四边形不等式优化]

DP怎么这么多优化哭    -  - 


题意:

在一条路上,有很多个站,每两个站有一条路,然后给你m个炸弹,要你炸掉这些路使得能互相连通的站的和最小,如果剩下一个站,那么价值是0,假如有a,b,c三 个站,价值就是a * b + b * c + a * c


分析:

dp[i][j] 表示从1到i炸毁k条路后所需的最小值

状态方程dp[i,k]=min(dp[j,k-1]+cost[j+1,i])(0<j<i ,0<k<=m)

cost[i,j] 表示不炸掉 i 到 j 这一段的值

cost[i,j]=cost[i,j-1]+( sum[j-1]-sum[i-1] ) * a[j];

sum[i]表示1到i站的权值和

四边形不等式优化资料http://blog.csdn.net/lmyclever/article/details/6677683

分析一下cost[i,j],当 j 固定时,cost[i,j]的值是单调递减的,看看dp函数是否满足四边形不等式:

证明:当j固定时,cost[i,j-1],sum[j-1], a[j]的值固定,sum[i-1]随着i的值增大而增大,但是前面有个负号,所以cost[i,j]的值是单调递减


dp[i][j]= min{dp[i-1][k]+cost(k+1,j)},s[i-1][j]<=k<=s[i][j+1],复杂度降为O(m*n )

s[i][j]表示 [i,j]这个区间的最优决策


//AC CODE:参照牛人的~

#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
const int N = 1000+5;
int sum[N];//1到N的和
int num[N];//输入数据
int cost[N][N];//[i,j]间的站点的权值
int s[N][N];//s[i][j]表示[i,j]这个区间的最优决策
//s[i][j],要看状态转移的前一个区间,跟后一个区间,利用区间单调性可以知道,
int dp[N][N];//状态方程dp[i,k]=min(dp[j,k-1]+cost[j+1,i])(0<j<i ,0<k<=m)
int main()
{
    int n,m;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        if(n==0&&m==0)break;
        int i,j,k;
        memset(cost,0,sizeof(cost));
        sum[0] = 0;
        num[0] = 0;
        for(i=1; i<=n; i++)
        {
            scanf("%d",&num[i]);
            sum[i]=sum[i-1]+num[i];
        }
        for(i=1; i<=n; i++)
            for(j=i+1; j<=n; j++)
            {
                cost[i][j]=cost[i][j-1]+(sum[j-1]-sum[i-1])*num[j];
            }
        for(i=0; i<=n; i++)//前面几个站炸掉几条路
        {
            dp[i][0]=cost[1][i];//炸掉0条路   前i条路,不炸掉的权值 cost[1,i]
            s[i][0]=0;//前i条路,不炸掉的状态
        }
        for(k=1; k<=m; k++)//炸路的条数
        {
            s[n+1][k]=n-1;//最后的一个状态(s[n][k])的后一个状态
            for(i=n; i>k; i--)
            {
                dp[i][k]=dp[k][k-1]+cost[k+1][i];
                //未优化前需要遍历dp[j,k-1]+cost[j+1,i]  (0<j<i ,0<k<=m)
                //j固定时,cost[j+1,i]为减函数
                s[i][k]=k;//???炸掉第k条路???
                //因为这里你需要的是j+1,因此就可以证明上一个循环中应该从后往前推,因为要先计算s[i][j+1]的值
                for(j=s[i][k-1]; j<=s[i+1][k]; j++)//前一状态:s[i][k-1]现在的状态:s[i][k]后一状态:s[i+1][k]
                {
                    int temp = dp[j][k-1]+cost[j+1][i];
                    if(temp<dp[i][k])
                    {
                        dp[i][k]=temp;
                        s[i][k]=j;//前一状态,后一状态之间炸掉 最优的路
                    }
                }
            }
        }
        printf("%d\n",dp[n][m]);
    }
    return 0;
}






  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值