E 做计数

题目描述
这一天,牛牛与 牛魔王相遇了――然而这并不在 牛牛期望之中。
牛魔王不出意料又给 牛牛一道看似很难的题目:求有多少个不同的正整数三元组 (i,j,k)\text{}(i,j,k)(i,j,k) 满足 i+j=k\sqrt i+\sqrt j=\sqrt ki
​+j
​=k
​,且 i×j≤ni\times j\leq ni×j≤n。
牛牛并不会做,你能略施援手吗?
当两个三元组 (i1,j1,k1),(i2,j2,k2)\text{}(i_1,j_1,k_1), (i_2,j_2,k_2)(i1​,j1​,k1​),(i2​,j2​,k2​) 满足 i1≠i2i_1\neq i_2i1​​=i2​ 或 j1≠j2j_1\neq j_2j1​​=j2​ 或 k1≠k2k_1\neq k_2k1​​=k2​ 时它们被认为是不同的。
输入描述:

第一行,一个正整数 n。

保证 1≤n≤4×1071\leq n\leq 4\times 10^71≤n≤4×107。

输出描述:

输出一行,一个整数表示答案。

示例1
输入
复制

1

输出
复制

1

说明

(1,1,4)

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdio>
using namespace std;

int ans;

void getSum(int n) {
	int sq = sqrt(n);
	for(int i = 1; i <= sq; i++) {
		if(n % i == 0) {
			if(i == sq)	ans++;
			else ans += 2;
		}
	}
} 
 
int main() {
	int n, sq;
	cin >> n;
	sq = sqrt(n);
	for(int i = 1; i <= sq; i++) {
		getSum(i * i);
	}
	cout << ans << endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值