题目描述
春春是一名道路工程师,负责铺设一条长度为 nnn 的道路。
铺设道路的主要工作是填平下陷的地表。整段道路可以看作是 nnn 块首尾相连的区域,一开始,第 iii 块区域下陷的深度为 did_idi 。
春春每天可以选择一段连续区间[L,R] [L,R][L,R] ,填充这段区间中的每块区域,让其下陷深度减少 111。在选择区间时,需要保证,区间内的每块区域在填充前下陷深度均不为 000 。
春春希望你能帮他设计一种方案,可以在最短的时间内将整段道路的下陷深度都变为 000 。
输入格式
输入文件包含两行,第一行包含一个整数 nnn,表示道路的长度。 第二行包含 nnn 个整数,相邻两数间用一个空格隔开,第i ii 个整数为 did_idi 。
输出格式
输出文件仅包含一个整数,即最少需要多少天才能完成任务。
输入输出样例
输入 #1
6
4 3 2 5 3 5
输出 #1
9
说明/提示
【样例解释】
一种可行的最佳方案是,依次选择: [1,6][1,6][1,6]、[1,6][1,6][1,6]、[1,2][1,2][1,2]、[1,1][1,1][1,1]、[4,6][4,6][4,6]、[4,4][4,4][4,4]、[4,4][4,4][4,4]、[6,6][6,6][6,6]、[6,6][6,6][6,6]。
【数据规模与约定】
对于 30%30%30% 的数据,1≤n≤101 ≤ n ≤ 101≤n≤10 ;
对于 70%70%70% 的数据,1≤n≤10001 ≤ n ≤ 10001≤n≤1000 ;
对于 100%100%100% 的数据,1≤n≤100000,0≤di≤100001 ≤ n ≤ 100000 , 0 ≤ d_i ≤ 100001≤n≤100000,0≤di≤10000 。
#include <iostream>
#include <cstring>
using namespace std;
const int maxn = 2e5 + 10;
int a[maxn];
int main() {
int n;
cin >> n;
for(int i = 0; i < n; i++)
cin >> a[i];
int now = 0, ans = 0;
for(int i= 0; i < n; i++) {
if(a[i] > now) {
ans += a[i] - now;
now = a[i];
}
else {
now = a[i];
}
}
cout << ans << endl;
return 0;
}