使用硅基流动+Chatbox接入DeepSeekR1模型

注册硅基流动账号

https://cloud.siliconflow.cn/i/8ZOPnr22

点击链接进行注册

注册完即送2000w的token

在此可以在线体验deepseekR1模型

这不是这篇文章的重点,重点在以下章节:

点击在线体验后,创建一个自己的API密钥

下载Chatbox

chatbox可以让你自己在本地使用deepseekR1模型

https://chatboxai.app/zh

下载完成后点击使用自己的API

模型提供方选择硅基流动API,模型选择DeepSeekR1

以上即可配置成功,速度很快。

注意:现在赠送的余额不能直接使用更快的Pro的R1/V3模型了,但是蒸馏模型(Distill)可以随便用。

### 流动 Chatbot 技术原理 流动 chatbot 是一种于人工智能技术构建的聊天机器人系统,该系统能够模拟人类对话并提供智能化交互服务。这类系统的底层架构通常依赖于强大的自然语言处理(NLP)技术和机器学习算法。 #### 架构组成 1. **前端界面** 用户通过图形化或文字输入接口与chatbot互动。这部分设计注重用户体验,确保操作简便直观[^3]。 2. **核心引擎** 这是整个系统的中枢神经系统,包含了多个子模块: - **意图识别器**:解析用户的查询目的,将其映射到预定义的动作集上。 - **语义理解单元**:深入分析句子含义,捕捉细微差别,从而更精准地回应用户需求。 - **响应生成机制**:依据前两步的结果以及内置的知识库来构造合适的回复内容。 3. **后端支持** 提供必要的计算资源和服务支撑,比如数据库访问、外部API调用等,保障高效稳定的运行环境[^4]。 #### 关键特性 - **多轮对话管理**:允许连续性的交流过程,记忆先前讨论的内容以便更好地理解和预测后续话题走向。 - **个性化定制能力**:根据不同场景下的特定要求灵活调整行为模式,增强适应性和实用性。 - **持续学习进化**:借助增量式训练方法不断优化性能表现,保持与时俱进的状态。 ```python class SiJiChatBot: def __init__(self, knowledge_base): self.knowledge_base = knowledge_base def process_input(self, user_message): intent = identify_intent(user_message) context = extract_context(intent) response = generate_response(context, self.knowledge_base) return response ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值