- 博客(8)
- 收藏
- 关注
原创 Datawhale X 李宏毅苹果书 AI夏令营_深度学习进阶_Datawhile_task3_批量归一化和卷积神经网络
批量归一化和卷积神经网络是深度学习中的重要技术。批量归一化通过减少内部协变量偏移,提高了网络的训练效率和性能;而卷积神经网络则通过卷积和池化操作,有效地处理具有网格结构的数据。两者的结合使得深度学习模型在多个领域取得了突破性的进展。
2024-09-01 21:36:30 905
原创 Datawhale X 李宏毅苹果书 AI夏令营第五期 深度学习(入门)task03-机器学习框架and实践攻略
解决不匹配问题需要深入理解数据的产生方式和分布变化的原因,可能需要收集与测试数据分布更一致的训练数据,或者使用一些技术来调整模型,使其能够适应数据分布的变化。交叉验证是一种评估模型泛化能力的技术,它通过将训练数据分成多个子集,轮流将其中一个子集用作验证集,其余用作训练集,来评估模型的性能。模型结构的选择取决于任务的类型和数据的特点。深度学习模型的构建是一个迭代和试错的过程,涉及到多个方面的决策,包括选择模型结构、确定网络深度和宽度、选择合适的激活函数和损失函数、设置合理的优化算法和学习率等。
2024-09-01 19:44:08 1976
原创 Datawhale X 李宏毅苹果书 AI夏令营第五期 深度学习(入门)task02-线性模型
蓝线 1 函数斜坡的起点,设在红色函数的起始的地方,第 2 个斜坡的终点设在第一个转角处,让第 1 个蓝色函数的斜坡和红色函数的斜坡的斜率是一样的,这个时候把 0+1 就可以得到红色曲线左侧的线段。接下来第 3 个部分,第 2 个转折点之后的部分,就加第 3 个蓝色的函数,第 3 个蓝色的函数坡度的起始点设的跟红色函数转折点一样,蓝色函数的斜率设的跟红色函数斜率一样,接下来把 0+1+2+3 全部加起来,就得到完整红色的线。也就是说,只要有足够的蓝色函数把它加起来,就可以变成任何连续的曲线。
2024-08-28 21:23:57 1102
原创 Datawhale X 李宏毅苹果书 AI夏令营_深度学习进阶_Datawhile_task2_自适应学习率、学习率调度、分类与CNN实践
这段代码定义了一个图像分类器类(Classifier),继承自PyTorch的nn.Module。该分类器通过一系列卷积层、批归一化层、激活函数和池化层构建卷积神经网络(CNN),用于提取图像特征。随后,这些特征被输入到全连接层进行分类,最终输出11个类别的概率,用于图像分类任务。"""定义一个图像分类器类,继承自PyTorch的nn.Module。该分类器包含卷积层和全连接层,用于对图像进行分类。""""""初始化函数,构建卷积神经网络的结构。包含一系列的卷积层、批归一化层、激活函数和池化层。
2024-08-28 20:53:12 1865
原创 Datawhale X 李宏毅苹果书 AI夏令营深度学习进阶Datawhile_task1.1局部极小值与鞍点task1.2_批量与动量
局部极小值与鞍点。
2024-08-27 21:21:30 1156
原创 Datawhale X 李宏毅苹果书 AI夏令营第五期 深度学习(入门)task01-通过案例了解机器学习
机器学习,顾名思义,机器具备有学习的能力。机器学习就是让机器具备找一个函数的能力。机器具备找函数的能力以后,它可以做很多事。比如语音识别,机器听一段声音,产生这段声音对应的文字。我们需要的是一个函数,该函数的输入是声音信号,输出是这段声音信号的内容。这个函数显然非常复杂,人类难以把它写出来,因此想通过机器的力量把这个函数自动找出来。还有好多的任务需要找一个很复杂的函数,以图像识别为例,图像识别函数的输入是一张图片,输出是这个图片里面的内容。
2024-08-26 21:24:08 1870
原创 include<Eigen/Eigen>无法找到目录的问题的解决方案
在ubuntu工作空间编译过程中遇到的一个问题出现了include无法找到目录的问题。
2024-07-26 10:26:00 431
原创 arduino error: ‘nullptr’ was not declared in this scope
亲测有效,由报错的地址找到对应的文件,将里边的nullptr改成NULL即可。
2024-07-25 15:27:54 487
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人