蓝桥杯:K倍区间

本文介绍了一种优化方法,利用前缀和和取余特性,计算一个整数数组中K倍区间的总数,将时间复杂度降低到O(n),并提供了C++代码实现。
摘要由CSDN通过智能技术生成

给定一个长度为 N 的数列,A1,A2,…AN,如果其中一段连续的子序列 Ai,Ai+1,…Aj 之和是 K 的倍数,我们就称这个区间 [i,j] 是 K 倍区间。 

你能求出数列中总共有多少个 K 倍区间吗? 

输入格式

第一行包含两个整数 N 和 K。

以下 N 行每行包含一个整数 Ai。

输出格式

输出一个整数,代表 K 倍区间的数目。

数据范围

1≤N,K≤100000,
1≤Ai≤100000

输入样例:
5 2
1
2
3
4
5
输出样例:
6

思路:直接使用前缀和然后两层便利循环会超时:100000*100000 因此需要优化

优化到o(n)的复杂度:

考虑一段前缀和和K取余,只有右前缀和和做前缀和(s[j],和s[i], j > i)都和K有相同的余数才能使得中间的前缀和和K取余为0

因此记录每段前缀和取余数的数,得到余数后,往前查找,查看有多少相同的余数,如果有相同的余数那么就直接加上总共的相同余数的前缀和的数量

代码:
 

// //TLE
// #include <iostream>
// #include <algorithm>

// using namespace std;

// const int N=1000010;
// long long s[N];

// int main()
// {
//     int n,k;
//     scanf("%d %d",&n,&k);
    
//     for(int i=1;i<=n;i++)
//     {
//         scanf("%lld",&s[i]);
//         s[i]+=s[i-1];
//     }
    
//     // for(int i=1;i<=n;i++) cout<<s[i]<<" ";
//     int res=0;
//     for(int i=1;i<=n;i++)
//     {
//         for(int j=1;j<=i;j++) 
//         {
//             if(i==j) 
//             {
//                 if(s[i]%k==0) res++;
//             }
//             else if((s[i]-s[j])%k==0) 
//             {
//                 // cout<<s[i]<<" "<<s[j]<<endl;
//                 res++;
//             }
//         }
//     }
    
//     cout<<res<<endl;

//     return 0;
// }

#include <iostream>
#include <algorithm>

using namespace std;

const int N=1000010;

long long s[N];
long long cnt[N];

int main()
{
    int n,k;
    scanf("%d %d",&n,&k);
    
    for(int i=1;i<=n;i++)
    {
        scanf("%lld",&s[i]);
        s[i]+=s[i-1];
    }
    
    long long res=0;
    cnt[0]=1; //前缀和本身为K的倍数的时候,不需要往前再找一个
    for(int i=1;i<=n;i++)
    {
        res+=cnt[s[i]%k]; //之前有和自己一样余数的前缀和的个数
        cnt[s[i]%k]++; //该余数增加一个
    }
    
    printf("%lld",res);
    
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值