给定一个长度为 N 的数列,A1,A2,…AN,如果其中一段连续的子序列 Ai,Ai+1,…Aj 之和是 K 的倍数,我们就称这个区间 [i,j] 是 K 倍区间。
你能求出数列中总共有多少个 K 倍区间吗?
输入格式
第一行包含两个整数 N 和 K。
以下 N 行每行包含一个整数 Ai。
输出格式
输出一个整数,代表 K 倍区间的数目。
数据范围
1≤N,K≤100000,
1≤Ai≤100000
输入样例:
5 2
1
2
3
4
5
输出样例:
6
思路:直接使用前缀和然后两层便利循环会超时:100000*100000 因此需要优化
优化到o(n)的复杂度:
考虑一段前缀和和K取余,只有右前缀和和做前缀和(s[j],和s[i], j > i)都和K有相同的余数才能使得中间的前缀和和K取余为0
因此记录每段前缀和取余数的数,得到余数后,往前查找,查看有多少相同的余数,如果有相同的余数那么就直接加上总共的相同余数的前缀和的数量
代码:
// //TLE
// #include <iostream>
// #include <algorithm>
// using namespace std;
// const int N=1000010;
// long long s[N];
// int main()
// {
// int n,k;
// scanf("%d %d",&n,&k);
// for(int i=1;i<=n;i++)
// {
// scanf("%lld",&s[i]);
// s[i]+=s[i-1];
// }
// // for(int i=1;i<=n;i++) cout<<s[i]<<" ";
// int res=0;
// for(int i=1;i<=n;i++)
// {
// for(int j=1;j<=i;j++)
// {
// if(i==j)
// {
// if(s[i]%k==0) res++;
// }
// else if((s[i]-s[j])%k==0)
// {
// // cout<<s[i]<<" "<<s[j]<<endl;
// res++;
// }
// }
// }
// cout<<res<<endl;
// return 0;
// }
#include <iostream>
#include <algorithm>
using namespace std;
const int N=1000010;
long long s[N];
long long cnt[N];
int main()
{
int n,k;
scanf("%d %d",&n,&k);
for(int i=1;i<=n;i++)
{
scanf("%lld",&s[i]);
s[i]+=s[i-1];
}
long long res=0;
cnt[0]=1; //前缀和本身为K的倍数的时候,不需要往前再找一个
for(int i=1;i<=n;i++)
{
res+=cnt[s[i]%k]; //之前有和自己一样余数的前缀和的个数
cnt[s[i]%k]++; //该余数增加一个
}
printf("%lld",res);
return 0;
}