Python算法——3.计算力扣银行的钱


提示:以下是本篇文章正文内容,下面案例可供参考

一、题目分析

题目:Hercy 想要为购买第一辆车存钱。他每天都往力扣银行里存钱。
最开始,他在周一的时候存入 1 块钱。从周二到周日,他每天都比前一天多存入 1 块钱。在接下来每一个周一,他都会比前一个周一多存入 1
块钱。
给你 n ,请你返回在第 n 天结束的时候他在力扣银行总共存了多少块钱
原题链接:计算力扣银行的钱

审题可以得知第一周周一存 1 块钱,接下来每周一,都会比前一个周一多存 1 块钱,在一周内,每天比前一天多存 1 块钱,于是我们可以假设有a个整周,非完整周有b天,利用每整周相差7块钱可得到等差数列,整周所有钱数加上非完整周的钱数即为总钱数。

二、解题

1.方法一:等差数列

思路:等差数列求整数周所有钱数,加上非整数周钱数即为结果,返回值为整数。

class 
### LeetCode 回溯算法组合 Python 实现 #### 问题描述 在力平台上的组合类题目通常涉及从给定集合中选取若干元素形成新的子集或序列。这类问题可以通过回溯算法高效解决。 #### 示例:组合总和 考虑一道典型的组合问题——组合总和[^5]。目标是从候选数集中找出所有和为目标数值的组合。每个数字可以无限制重复被选取。 ```python class Solution: def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]: result = [] def backtrack(remain, combo, start): if remain == 0: # 当剩余值为零时,当前组合满足条件 result.append(list(combo)) return elif remain < 0: # 剩余小于零则不继续探索此路径 return for i in range(start, len(candidates)): # 尝试添加每一个可能的选择进入现有组合 combo.append(candidates[i]) # 进一步递归调用并传递更新后的参数 backtrack(remain - candidates[i], combo, i) # 清除最后一步以便尝试其他可能性 combo.pop() backtrack(target, [], 0) return result ``` 上述代码展示了如何利用回溯方法构建符合条件的所有不同组合方式。每当找到一组合适的解就将其记录下来;如果某条分支无法达成预期,则立即停止深入而返回上一层重新选择。 #### 关键点解析 - **终止条件**:当累积的目标值达到设定值即`remain==0`时结束本轮搜索并将结果保存。 - **剪枝策略**:一旦发现不可能再凑成所需的结果(`remain<0`)便提前退出循环减少不必要的计算量。 - **状态重置**:每次完成一次完整的遍历之后都需要恢复之前的状态以供后续操作使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值