Farmer John 欠了 Bessie N 加仑牛奶(1<=N<=1e12)。他必须在 K 天内将牛奶给 Bessie。但是,他不想将牛奶太早拿出手。另一方面,他不得不在还债上有所进展,所以他必须每天给 Bessie 至少 M 加仑牛奶(1≤M≤1e12)。
以下是 Farmer John 决定偿还 Bessie 的方式。
首先他选择一个正整数 X。
然后他每天都重复以下过程:
1.假设 Farmer John 已经给了 Bessie G 加仑,计算 (N-G)/X(向下取整)。令这个数为 Y。
2.如果 Y 小于 M,令 Y 等于 M。
3.给 Bessie Y 加仑牛奶。
求X 的最大值,使得 Farmer John 按照上述过程能够在 K 天后给 Bessie 至少 N 加仑牛奶 (1≤K≤1e12)。
输入格式
输入仅有一行,包含三个空格分隔的正整数 N,K,M,满足 K×M<N。输出格式
输出最大的正整数 X,使得按照上述过程 Farmer John 会给 Bessie 至少 N 加仑牛奶。
解法
范围那么大,一个个找过去肯定超时只能二分x去判断是否符合条件
关于是否符合条件的判定
直接暴力模拟肯定会超时的啦,我们可以手动来算一下,如果我们还的数量小于m, (N-G)/X 小于m, 那明天这个值只会更小,所以就变成了每天都还m瓶,否则就计算一下会有连续多少天的每日还债量是y,假设这种情况持续a天,那么可以知道在a−1天之后的还债量=y,而a天之后的还债量<y。列出关系式即可(代码也有一点注释)
代码
#include <iostream>
#include <cmath>
#include <queue>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;
long long int n, k, m; //欠n k天还完 每天至少还m 决定每天还max((n-g)/x, m)瓶 g为已还 求x的最大值
long long int ans;
bool judge(long long int x)
{
long long int tk = k, g = 0; //tk 表示还剩几天时间可以还牛奶
while(g<n && tk>0)
{
long long int y= (n-g)/x;
if(y<m) //如果y小于m, (n-g)/x只会越来越小 每天就固定还m瓶了
{
long long int day = (n-g)/m;
if((n-g) %m) day++;
return day <= tk;
}
//否则就是y>=m 的情况
long long int day = min(tk,(n-x*y-g)/y+1);
tk -= day;
g += day * y;
}
return g>=n;
}
int main() {
cin >> n >> k >> m;
long long int l = 1, r = n;
while( l<= r) {
long long int mid = (l+r)/2;
if(judge(mid)) {
ans = mid;
l = mid+1;
}
else r = mid - 1;
}
cout << ans << endl;
return 0;
}