自然语言处理
文章平均质量分 90
ithicker
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
word2vec发展过程
最后一点,在神经网络模型中,如”the”、”a”等频繁词会降低训练的速度以及损害训练结果准确性,为了解决这个问题,引入了欠采样技术,技术原理很简单,就是以某个随机的概率舍弃词典中的词,越频繁的词被舍弃的概率越大,因此,在不改变词频排列顺序的前提下,大大减小了频繁词与非频繁词的比例,从而突出了非频繁词,训练结果更加准确,训练的速度也更快。假设词表中共有n个词,将所有单词排序后,每个单词都会有一个位置信息,则对于单词[公式],可以使用n维向量来表示,其中向量的第i分量的值为1,其余值为0,向量记为[0,0,….原创 2022-08-06 13:41:17 · 467 阅读 · 0 评论 -
word2vec原理
这篇论文详细地推导和解释了word2vec模型的参数更新公式,包括:CBOW(continuous bag-of-word)模型和SG(skip-gram)模型,以及两种参数优化技术:hierarchical softmax 和 negative sampling.原创 2022-08-06 13:38:17 · 599 阅读 · 0 评论
分享