扩展欧几里德算法

前面大部分摘自百度百科,最后补充了一个解模线性方程的模板

 

欧几里德算法

欧几里德算法又称辗转相除法,用于计算两个整数 a,b 的最大公约数。其计算原理依赖于下面的定理:

定理: gcd(a,b) = gcd(b,a mod b)

其算法用 C++ 语言描述为:

int Gcd(int a, int b)//返回值可能是负数,有时候需要取相反数

{

  if (b == 0)

  return a;

  return Gcd(b, a % b);

}

// 当然你也可以写成迭代形式:

int Gcd(int a, int b)

{

     while (b != 0)

     {

         int r = b;

         b = a % b;

         a = r;

     }

     return a;

}

 

扩展欧几里德算法

根据数论中的相关定理,对于任意整数 a,b, 一定存在整数 x,y ,使得 ax+by=gcd(a,b) ,并且 gcd(a,b) 是整数 a,b 线性表示中的最小正数。

扩展欧几里德算法就是给定 a,b ,在返回 gcd(a,b) 的同时,解出 x,y

 

把这个实现和 Gcd 的递归实现相比,发现多了下面的 x,y 赋值过程,这就是扩展欧几里德算法的精髓。

可以这样思考 :

对于 a' = b, b' = a % b 而言,我们求得 x, y 使得 a'x + b'y = Gcd(a', b')

由于 b' = a % b = a - a / b * b ( 注:这里的 / 是程序设计语言中的除法 )

那么可以得到 :

a'x + b'y = Gcd(a', b') ===>

bx + (a - a / b * b)y = Gcd(a', b') = Gcd(a, b) ===>

ay +b(x - a / b*y) = Gcd(a, b)

因此对于 a b 而言,他们的相对应的 p q 分别是 y (x-a/b*y)

 

求解模线性方程

ax=b(mod n)(a,b<n)===>ax-ny=b

于是可以套用上面的扩展欧几里德算法来解 x,y 。若 b%gcd(a,n)!=0, 则说明方程无解。有解的情况下,对于 (0<=x<n) ,解的个数为 gcd(a,n)

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值