前一段时间看到知乎上有人在讨论四等分圆的问题,于是闲来研究了一种另类的四等分圆的方法,下将细细道来:
首先先切掉半圆因为圆具有对称性,切掉一半后无伤大雅,其实我们只用研究 14 圆就可以了。
我们的题目是求出下图 AC 的位置
法一:

如上图:令BC=xAC=y
易证AB=x2+y2=1
则y=1−x2
已经转化为函数式,那么开始愉快的使用微积分:
根据题意可知不规则图形S不规则图形ABCD=π8
则有
∫0x1−t2dt=π8
这个积分是可积的,用换元积分法得到arcsin(x)+x1−x22=π8移项得arcsin(x)=π4−x1−x2x=sin(π4−x1−x2)套一下公式得x=sin(π4)cos(x1−x2)−cos(π4)sin(x1−x2)注意到 sin(π4)=12 (这里先不化简)x=sin(x1−x2)−cos(x1−x2)2大手一挥令成t:(注意这里是t/2)letx1−x2=t2thenx=1−1−t22则有1−1−t22=sin(t2)−cos(t2)2一步一步化简1−1−t2=sin(t2)−cos(t2)1−1−t2=sin2(t2)+cos2(t2)−2sin(t2)cos(t2)1−1−t2=1−2sin(t2)cos(t2)1−t2=2sin(t2)cos(t2)1−t2=sin(t)继续化简1−t2=sin2(t)t2=1−sin2(t)t2=cos2(t)t=cos(t)得到了我们的最终结果:t=cos(t)这是一个开普勒方程,解起来比较繁琐,这里就不赘述了,想了解的可以参考
酱紫君的x=cosx - 搜索结果 - 知乎 (zhihu.com)和
农夫三拳有点疼的方程 cosx=x 是否有解析解? - 知乎 (zhihu.com)
得到解析解:
t=π2exp(1π∫01arctan(tln(1−t2+1t)(πt+2)t2ln2(1−t2+1t)−πt−1)dt)
t=1π∫0πarctan(tan(t−sint+π22))dt+1π
他们的结果都是一样的, t≈0.739 ,最后把t代入,得到……
停!忘了一件事,t关于x的代数式是可以化简的:
又x=1−1−t22又t=cos(t)x=1−1−cos2(t)2x=1−sin2(t)2x=1−sin(t)2x=1−cos(π2−t)2x=sin(π2−t2)代入t得到 x≈0.40397
解析式如下:x=sin(π2−1π∫0πarctan(tan(t−sint+π22))dt−1π2)
法二:
这个方法不用那一步微积分,纯粹的三角函数,相对比较简单(后面的开普勒方程还是要解的)

如图,设 ∠ABC=β ,则 ∠ABD=π2−β
因为不规则图形S不规则图形ABCD=π8又有不规则图形扇形扇形S不规则图形ABCD=S扇形ABD+S△ABCS扇形ABD=π2−β2π×12×πS△ABC=xy2=sin(β)cos(β)2
我们现在先开始化简:π2−β2π×12×π=π2−β2sin(β)cos(β)2=sin(2β)4联立得到π2−β2+sin(2β)4=π8现在已经有了法一的影子了,继续化简:π2−β+sin(2β)2=π4β−sin(2β)2=π42β−sin(2β)=π2sin(2β)=2β−π2这时候令 t=π2−2β ,就能得到:sin(π2−t)=tcos(t)=t又得到了法一中化简出来的式子,开普勒方程。
最终我们代入 t会得到:β=π2−t2β=π2−1π∫0πarctan(tan(t−sint+π22))dt−1π2然而我们知道 sin(β)=x ,给 β 套一个正弦,答案正好等于 x !
也就是说答案是相等的。
最终我们得到解析解:BC=sin(π2−1π∫0πarctan(tan(t−sint+π22))dt−1π2)∠ABC=π2−1π∫0πarctan(tan(t−sint+π22))dt−1π2
参考文献:1. x=cosx - 搜索结果 - 知乎 (zhihu.com)
2. 方程 cosx=x 是否有解析解? - 知乎 (zhihu.com)
3. 等分四分之一圆面积(沿切向)的另一种解法 - 知乎 (zhihu.com)