32.【2017.4.1】派
题目描述
我的生日要到了!根据习俗,我需要将一些派分给大家。我有 NN 个不同口味、不同大小的派。有 FF 个朋友会来参加我的派对,每个人会拿到一块派(必须一个派的一块,不能由几个派的小块拼成;可以是一整个派)。
我的朋友们都特别小气,如果有人拿到更大的一块,就会开始抱怨。因此所有人拿到的派是同样大小的(但不需要是同样形状的),虽然这样有些派会被浪费,但总比搞砸整个派对好。当然,我也要给自己留一块,而这一块也要和其他人的同样大小。
请问我们每个人拿到的派最大是多少?每个派都是一个高为 1,半径不等的圆柱体。
输入格式
第一行包含两个正整数 NN 和 FF ,表示派的数量和朋友的数量。
第二行包含 NN 个整数riri,表示第ii个派的半径。
输出格式
输出每个人能得到的最大的派的体积,精确到小数点后三位。
样例一
input
3 3
4 3 3
output
25.133
思路:
带精度的二分 while(r-l>0.000001)
因为分派可以分类似于 0.25π面积的派
小技巧
1. π=acos(-1.0) 反cos函数,要调用cmath库
2. double的输入是%lf
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int maxn=10000+50;
double l,r,num[maxn],gg[maxn],maxx,mid,ans;
int n,f,cnt;
const double pi=acos(-1.0);
bool can(double x){
cnt=f;
for(int i=1;i<=n;i++)
gg[i]=num[i];
for(int i=1;i<=n;i++){
while(gg[i]-x>=0){
gg[i]-=x;
cnt--;
}
if(cnt<=0) return true;
}
if(cnt>0) return false;
}
int main(){
scanf("%d%d",&n,&f);
f+=1;
for(int i=1;i<=n;i++){
scanf("%lf",&num[i]);
num[i]*=num[i];
maxx=max(maxx,num[i]);
}
// for(int i=1;i<=n;i++)
// printf("%lf",num[i]);
l=0;r=maxx+1.0;
while(r-l>0.000001){
// printf("%f %f\n",l,r);
mid=(l+r)/2;
if(can(mid)) l=mid;
else r=mid;
}
ans=l*pi;
printf("%.3f",ans);
return 0;
}