保研复习
文章平均质量分 95
Loiser1
这个作者很懒,什么都没留下…
展开
-
线性回归、logit回归、probit回归
回归主要借鉴高级计量经济学及Stata应用 第2版_陈强_北京:高等教育出版社_2014.04_669_13526050文中所提"书"即是这本中的内容线性回归Yi=b0+b1Xi+ϵi,ϵi∼(0,σ2)Y_i=b_0+b_1X_i+\epsilon_i,\qquad \epsilon_i\sim (0,\sigma^2)Yi=b0+b1Xi+ϵi,ϵi∼(0,σ2)Y^=b0+b1X\hat{Y}=b_0+b_1XY^=b0+b1X古典线性回归模型的假定:总体模型:Y原创 2021-04-09 23:35:04 · 7862 阅读 · 0 评论 -
主成分分析与因子分析-原理及python实现
下面两种算法一般都需标准化消除量纲影响主成分分析(PCA)目的数据降维,将n维数据降为n’维数据。原数据X:n×m,sample point:(x1,...,xn)T,base:{w1,...,wn}X:n\times m,sample\,point:(x_1,...,x_n)^T,base:\lbrace w_1,...,w_n\rbraceX:n×m,samplepoint:(x1,...,xn)T,base:{w1,...,wn}转换到n‘维空间中,x(i)→z(i)=(zi(i),.原创 2021-04-06 22:09:56 · 1700 阅读 · 0 评论