最大字段和问题分治算法

1.最大字段和问题分治算法描述

#include<iostream>
using namespace std;

int MaxSum(int a[ ], int left, int right)
{
    int sum=0;
    int center,leftsum,rightsum,s1,lefts,i,s2,rights,j;
    if (left==right)        //如果序列长度为1,直接求解
    {
        if (a[left]>0)
            sum=a[left];
        else
            sum=0;
    }
    else
    {
        center=(left+right)/2;    //划分
        leftsum=MaxSum(a, left, center);
        //情况一,最大字段和在左半部分
        rightsum=MaxSum(a, center+1, right);
        //情况二,最大字段和在右半部分
        s1=0;
        lefts=0;
//情况三,最大字段和分别在左半部分和右半部分各取一部分,先求解左半部分s1
        for (i=center; i>=left; i--)
        {
            lefts+=a[i];
            if (lefts>s1)
                s1=lefts;
        }
        s2=0;
        rights=0;             //再求解右半部分s2
        for (j=center+1; j<=right; j++)
        {
            rights+=a[j];
            if (rights>s2)
                s2=rights;
        }
        sum=s1+s2;              //计算情况三的最大子段和
        if (sum<leftsum)
            sum=leftsum;
        //合并,在sum、leftsum和rightsum中取较大者
        if (sum<rightsum)
            sum=rightsum;
    }
    return sum;
}
int main()
{
    int n;
    int a[100];
    cin>>n;
    for(int i=0;i<n;i++)
    {
        cin>>a[i];
    }
    cout<<MaxSum(a,0,n-1);//输出最大字段和

    return 0;
}

2.时间复杂度分析

把原问题分解为2个子问题,分解子问题时间复杂度为O(1),情况一与情况二合并子问题时间复杂度为2T(n/2),情况三为O(n),综合下来,时间复杂度为O(nlogn)。

3.对分治法的体会和思考

分治法通过将原问题分解成多个规模大致相同的子问题,再将子问题分解为更小的子问题,直到所得到的子问题能够直接求解为止,最后将子问题的解合并,得到原问题的解。是一种较为高效的算法。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值