1.最大字段和问题分治算法描述
#include<iostream>
using namespace std;
int MaxSum(int a[ ], int left, int right)
{
int sum=0;
int center,leftsum,rightsum,s1,lefts,i,s2,rights,j;
if (left==right) //如果序列长度为1,直接求解
{
if (a[left]>0)
sum=a[left];
else
sum=0;
}
else
{
center=(left+right)/2; //划分
leftsum=MaxSum(a, left, center);
//情况一,最大字段和在左半部分
rightsum=MaxSum(a, center+1, right);
//情况二,最大字段和在右半部分
s1=0;
lefts=0;
//情况三,最大字段和分别在左半部分和右半部分各取一部分,先求解左半部分s1
for (i=center; i>=left; i--)
{
lefts+=a[i];
if (lefts>s1)
s1=lefts;
}
s2=0;
rights=0; //再求解右半部分s2
for (j=center+1; j<=right; j++)
{
rights+=a[j];
if (rights>s2)
s2=rights;
}
sum=s1+s2; //计算情况三的最大子段和
if (sum<leftsum)
sum=leftsum;
//合并,在sum、leftsum和rightsum中取较大者
if (sum<rightsum)
sum=rightsum;
}
return sum;
}
int main()
{
int n;
int a[100];
cin>>n;
for(int i=0;i<n;i++)
{
cin>>a[i];
}
cout<<MaxSum(a,0,n-1);//输出最大字段和
return 0;
}
2.时间复杂度分析
把原问题分解为2个子问题,分解子问题时间复杂度为O(1),情况一与情况二合并子问题时间复杂度为2T(n/2),情况三为O(n),综合下来,时间复杂度为O(nlogn)。
3.对分治法的体会和思考
分治法通过将原问题分解成多个规模大致相同的子问题,再将子问题分解为更小的子问题,直到所得到的子问题能够直接求解为止,最后将子问题的解合并,得到原问题的解。是一种较为高效的算法。