1. 模态分析
模态分析是动力学分析的基础,简而言之就是求线性模型结构的固有特性,包括频率、振型、振型参与系数、有效质量等。
模态分析的假设(可以对比线性结构定义):
-
结构没有外载荷(热,压力,温度,力等),即结构是自由震动的。
-
结构系统对任一组同时作用的激励的响应是该组内每一激励单独作用时系统的响应的线性叠加。
-
时不变假设,即结构具有恒定的总体质量矩阵和总体刚度矩阵,并不随时间改变而改变。
1.1 模态分析简介
每种结构都具有固定的振动形态,称之为振动模态。
模态是振动系统的一种固有振动特性,模态一般包含频率、振型和阻尼三个因素。为了便于对模态进行称呼,就以模态频率的大小进行排队,过这种排队的顺序就称之为阶。一个结构的动力学特性可以用模态参数完整的描述。
模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型,根据频率、阻尼、模态振型这些本质特征来描述结构,帮助我们明白结构是怎样振动的。初学者腰花一些心思在模态结果的介绍。
通过求解特征值和模态变换,将物理空间复杂、耦合的方程组进行解耦,解耦到模态空间的方程组为一组单自由度系统解耦的运动方程、设计结构,都存在固有频率和模态振型,这些特征依赖于确定结构的质量和刚度分布。
对于结构设计工程师,根据求解频率,知道当有外力作用时,明白结构模态振型和结构将怎样振动,帮助工程师设计出更优的结构。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。
振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。
模态分析是研究结构的动态特性的主要方法之一,通过模态分析主要可以得到结构的固有频率,振型两个结果。
求解的运动控制方程为:
以上是瞬态动力学的控制方程:惯性力+阻尼力+弹性力=合外力
不考虑阻尼的自由振动,方程为:
1.1.1 无阻尼模态分析理论
对于无阻尼线性结构自由振动的控制方程:
$$[M][ü]+[K][u]=0$$
其中M&K为常系数,
假设结构的运动简谐运动(通解形式):
$$[u]=[∅]_isin(wt+θ)$$
$$[ü]=-w²[∅]_isin(wt+θ)$$
将结构运动的位移和速度,代入到控制方程中,可得
括号里面的是一个矩阵,{∅}是一个向量;要等式成立要么矩阵的行列式为0,要么向量为0。
以下两种情况可以满足上述方程
(1) {ф}₁=0
表明结构没有振动,这个情况不考虑,舍去,接下来就是矩阵的行列式为0.
这里就从理论上说明了模态分析为什么会有无穷个解的原因了。
总结:
质量矩阵 M 由密度参数给定,刚度矩阵由材料本构关系,接触关系,约束情况等决定,即不考虑阻尼时,约束和材料确定后,结构的模态参数就确定了。
1.1.2 复模态分析理论(有阻尼模态分析理论)
有阻尼模态分析中假设结构没有外力作用,则控制方程变为:
$$[M][ü]+[C][ū]+[K][u]=0$$
如上为二阶常系数线性微分方程,设其解为
$$[u]=[Ψ]e^{λt}$$ (2)
代入方程(1)得到
(λ²[m]+λ[c]+[k]){Ψ}=[D(λ)]{Ψ}={0} (3)
同理:
矩阵[D(λ)]称为系统的特征矩阵。方程(3)是一个"二次特征值"问题,要(3)式有非零解的充要条件为
[D(λ)]=λ²[m]+λ[c]+[k]=0(注意这里的m、c、k都是常数)这里就是一个一元二次方程。
在复模态分析中,阻尼参数的输入非常重要,以临界阻尼为界,将阻尼分为过阻尼(阻尼比大于1)和欠阻尼(阻尼比小于1)。在过阻尼情况下,阻尼模态求解的结果是实模态;在欠阻尼情况下,阻尼模态求解的结果是复模态。也就是,只有c²<4km的情况,阻尼模态的特征值方程才存在复数解。由于虚数解可以描述实数解,因此直接使用虚数去表示,这也是为啥叫复模态理论。
对于单自由度,含有阻尼的自由振动系统,方程为
其中
对于包含陀螺效应的旋转软化结构或需考虑阻尼的结构,则使用阻尼法求解模态振型和复特征值。特征值的表达式:
$$σ_i$$复数特征值实部(振动的稳定参数,负值稳定正值扩散。)
$$w_i$$复数特征值虚部
特征值的虚部$$w_i$$代表系统的稳态角频率。
特征值的实部$$σ_i$$代表系统的约稳定性。
模态阻尼比由下式给出:
模态阻尼比计算机内部就是这样算的,计算出实部和虚部后直接计算。
这里第二遍的时候补充一下$$σ_i$$复数特征值实部详细介绍。
对数衰减率
表示任意连续位移峰值的比值。它的表达式如下:
结构阻尼进入链接口:
每一阶模态下的上述参数都不一样。
如果复合材料的阻尼比较小,那么可以忽略阻尼进行分析,近似认为
1.1.3 非对称复模态
摩擦啸叫是一个非常普遍的现象,如粉笔在黑板上写着会发出刺耳的声音,这种尖叫明显与摩擦有关,可以理解为摩擦导致的系统自激振动。该现象广泛出现在汽车,心铁路、航空等工业领域。以制动刹车装置为例,其简化模型由一片制动静盘和一片制动动盘组成。
制动装置系统的运动学控制方程为:
$$[M][ü]+[C][ū]+[K][u]=[F]$$
式中{F}为由静盘和动盘之间摩擦耦合引起的力。由于摩擦接触面之间的弹性设置, 对应节点相当于由弹簧连接, 而弹簧的刚度矩阵由刹车盘的摩擦材料性质决定, 所以摩擦力便可视为在对应节点的弹簧力和摩擦因数μ共同作用下产生的。由于摩擦因数μ在计算过程中是固定的,弹簧力垂直于动盘和静盘,摩擦力平行于动盘和静盘之间的接触面,所以{F}是一个可以用接触面上节点位移线性表示的量。从以上的讨论中,可以推出:
$$[K_F][u]=[F]$$
式中:$$[K_F]$$为耦合刚度矩阵, 表明{F}和节点位移{U}的关系。由于摩擦耦合的关系,
$$[K_F]$$是非对称的。可以得出:
$$[M][ü]+[C][ū]+([K]-[K_F])[u]=[0]$$
由于矩阵$$[K_F]$$是不对称的, 所以矩阵$$[K]$$-$$[K_F]$$也是不对称的, 得知简化模型的刚度矩阵是不对称的。不对称的刚度矩阵意味着系统的特征矩阵也是不对称的,
因此求解其复特征值的时候会出现实部小于零的解,即负阻尼现象,也是公认的可能会出现制动啸叫的解。通过这个结论我们可以分析清楚模型在哪一阶频率的时候会产生啸叫。
在模态计算中:
1.特征值等于结构自然频率(固有频率)值的平方;
2.特征向量,对应于结构的振型,即结构的每个固有频率都关联一个模态形状向量
$${∅}_i$$。
3.模态振型可以关于质量矩阵进行归一化:
$$[∅]^T_i[M][∅]_i$$=[1]
[1]是一个对角线上为1,其余数字为0的矩阵成为对角线矩阵。
模态振型也可以关于单位矩阵进行归一化,基于该归一化方法可以比较各个节点发生共振时的相对位移量,在关于单位矩阵进行归一化时,将模态的最大特征向量设置为1:Workbench后处理显示的关于质量矩阵归一化的结果;由于模态计算结果是一个归一化的相对值,结构在每个自由度上的振动形状具有真实意义,但软件计算给出的振动幅值不具有真实意义。
特征值的平方根等于结构的固有频 率(rad/s)
ANSYS Workbench输入和输出的固有频率的单位为Hz,因为输入和输出时候已经除以了2Π。
模态计算中的特征向量表征了结构 的模态振型,如图所示该形状即为 假设结构按照频率249Hz振动时的 形状。
工程实例 -2:刹车盘摩擦啸叫的非对称复模态计算
举例:
以一个二自由度弹簧振子系统来描述模态分析的计算原理,如图 2-1-1 所示。
其中两物体的质量分别为 m1、m2,坐标原点分别取其质心位置,以右向为正,水平位移分别为 x1、x2,连接两个物体的 3 个弹簧的刚度系数分别为 k1、k2、k3,不考虑阻尼和弹簧自重。
依据牛顿第二定律,对于物体 m1 有
$$m1x1''=-k1x1-k2(x1-x2)$$
其中$$-k2(x1-x2)$$的力学含义是:当物体 m1 向右的位移 x1,大于物体 m2,向右的位置 x2,(即 x1-x2>0)时,弹簧 k2 被压缩,施加给 m1 的力沿水平轴向左,取负号;反之 x1-x2<0 时,k2 伸长,施加给 m1 的力沿水平向右,取正号。
整理为二阶常系数线性齐次微分方程组:
其特解为:
$$w²的两个根是$$
因此ω有两个正实根,即振动系统有两个固有频率ω1,ω2。
固有频率与外界激励没有关系,是结构的一种固有属性,其数值取决于系统的固有参数 m1、m2 和 k1、k2、k3、k4,由低到高进行排列,依次称之为一阶固有频率ω1,和二阶固有频率ω2。
结论:
从上面的公式可以得到,结构的固有频率只受刚度分布和质量分布的影响,在无外界载荷激励时,固有频率客观存在;当有外界载荷激励时,结构按固有频率产生振动响应。
由计算可知,系统有多少自由度即对应几阶模态。一个点有 3 个平动自由度;刚体有 6 个自由度,分别为 3 个平动和 3 个转动自由度。
一个连续弹性体由无限多个微刚体组成,由于每个微刚体有 6 个自由度,因此理论上连续弹性体有无穷多个自由度。当自由度从有限变为无穷时,运动方程也由常微分方程组转为偏微分方程,频率由低到高排列,分别称为一阶、二阶......n 阶固有频率。
虽然连续弹性体在理论上是有无限多阶固有频率,但很多情况下我们只关心低阶的固有频率或者特定阶的固有频率。这是因为固有频率越低,越容易被外界所激励,另外结构受到特定的激励(如在某恒定转速下运行)时,也只关心特定阶的固有频率。
这里可以根据实际上课的情况进行补充。
关于阻尼的模态计算中的完整阻尼矩阵的详细讲解见如下链接:
1.2 模态分析应用
模态分析是最简单的动力学分析,有非常广泛的实用价值。模态分析可以帮助设计人员确定结构的固有频率和振型,从而使结构避免共振,并指导工程师预测在不同载荷作用下的振动形式。
1、验证有限元模型的准确性
在试验模态前期阶段,通过有限元模态分析可以帮助确定试验中的测点分布和参考点位置。而在后期阶段,试验模态的结果可以用于校准有限元模态,提高模型的准确性,因为有限元模型做了很多简化处理的,如装配与接触等等方面。
注:使用谐响应进行扫频分析时,查看模态振型确定测试点分布和参考点位置,在谐响应分析时进行详细讲述。
2、评价现有结构的动态特性
通过模态分析可以求得各阶模态参数,同时考虑结构所受的载荷,可得到结构的实际响应,从而评价结构的动态特性是否符合要求。
当获得了结构的模态参数之后,可在不修改实际结构的情况下,基于模态数据进行动力学修改(加减质量、弹簧-阻尼、动力吸振器等),验证修改之后的动力学行为,为实际结构的动力学修改提供指导。
注:模态分析中考虑阻尼影响时,可以不在材料设置中进行非线性设置,而是通过模态分析阻尼系数进行设置。
3、对结构危险部分进行预判
产品设计中出现了薄弱部分,其刚度必须降低,因此,薄弱环节必然影响模态参数,导致出现明显的局部模态。另一方面,薄弱部分辐射的噪声也必然增大。
注:日常工作中,接到复杂结构(上百个零件)装配体,对模型进行基础简化处理后,不论分析内容是什么,我都会首先进行模态分析。
①验模:如果装配关系不合理时,前几阶模态可能是 0;
②了解分析模型基本情况:安装位置合理性,刚度薄弱位置;
③为后续分析工作做准备。
1.3 固有频率与模态振型
1.3.1 固有频率定义
结构系统在受到外界激励产生运动时,将按特定频率发生自然振动,这个特定的频率被称为结构的固有频率。固有频率与外界激励没有关系,是结构的一种固有属性。不管外界有没有对结构进行激励,结构的固有频率都是存在的,只是当外界有激励时,结构是按固有频率产生振动响应的。
特征值等于结构自然频率(固有频率)值的平方;
1.3.2 多阶固有频率
我们对结构系统进行固有频率测试时,通常能得到多阶固有频率。
对于无阻尼单自由度系统而言,固有频率计算公式如下:
单位为 Hz,表示 1s 振动循环次数,k 为物体的刚度系数,单位是 N/m;
m 为物体的质量,单位是 Kg;
质量是由体积和密度的乘积得到的,密度一般不变,但是体积会受到结构的形状的影响。
也可以用圆频率(也称为角频率)来表示固有频率,公式为:
单位为 rad/s。
以上计算都是无阻尼的情况,因此,获得的固有频率为无阻尼固有频率。
对于一般性结构系统而言,都是有阻尼的,因此它的固有频率为由阻尼固有频率。无阻尼固有频率与有阻尼固有频率关系如下:
从上面的公式我们可以看出,结构的固有频率只受刚度分布和质量分布的影响,而阻尼对固有频率的影响非常有限。(假设ξ=0.1 时,则ωd=0.99499ωn)
固有频率受形状、材质影响的原因是材质(密度、杨氏模量和泊松比)影响的是质量和刚度,形状影响的也是质量和刚度。
如结构的边界条件不同, 固有频率必然不同,这是因为边界条件会影响到结构的刚度分布。
质量增大, 结构的固有频率必然降低,刚度增大,结构的固有频率必然增大。但是刚度继续增大,固有频率不会无限增大,只会增大一定程度。刚度增加越快,频率移动越慢。这是因为结构的共振峰对应的是固有频率, 刚度增大后,结构的固有频率会向上移动靠近反共振峰,反共振峰对应的刚度是无限大的。
如上主要讲解结构的固有频率和质量和刚度的关系。
1.3.4 低阶固有频率
低频模态的有效质量更大,更容易被激励起来,另外结构受到特定的激励时,也只关系特定阶的固有频率。
对于这部分的猜测是对的,是非常重要的。
1.3.5 基频和主频
基频是指结构的第一阶固有频率。
为了突出一阶频率的重要性,为一阶频率指定了一个特定的专业名称:基频
主频是指结构发生振动时,通常不会是以某一个频率振动,而是有多个振动频率,通常在这些振动频率中,能量最大的振动频率。
因此,这个主频可能是结构的固有频率,也可能是强迫响应频率。
基频一定是固有频率,主频可能不一定是结构的固有频率,主频主要看的是能量的大小。
我们知道:
当结构产生强迫振动时,振动的频率是与外界激励频率相等的,但此时,这个激励频率很大程度上不是结构的固有频率,而它的能量又是最大的,此时,主频就不是固有是固有频率。
1.3.6 共振
共振定义
共振是指系统受到外界激励频率与系统固有振动频率相等或接近时,系统产生大幅度剧烈的振动,甚至导致不可预料的行为。共振产生时的频率称为共振频率。
注意共振频率不等于固有频率。
共振频率是外界激励频率,固有频率是结构固有属性。
共振不一定只发生在单一固有频率处,往往发生在具有一定频率范围内的共振带中。
可以利用模态分析获得固有频率,与激励频率进行对比,找出设计中的薄弱部分。理论上改变质量和刚度可以改变固有频率,避免共振。
共振频率可以理解成固有频率浮动范围内的频率段 NVH。
避频方法
在接近固有频率时产生共振现象,对于“接近”该如何理解呢?或者说共振的频率段一般在固定频率附近多宽的区间呢?
算法上一般共振带取共有频率的 40%,比如某模型激励频率为 400Hz,则共振带为 240Hz-560Hz。
很多情况下,要考虑 40%以上的频率间隔,似乎是不现实的,因此,很难给出一定具体的数字来确定到底应该须离固有频率多远的距离。但是,也有一些行业普遍认同的观点。
如在汽车行业,一般要求是距固有频率有 3,4Hz 的间隔或者 15-20%的距离。
如 B 级车白车身第一阶模态在 30Hz 附近,15%的频率间隔,则对应 4.5Hz,跟 3、4Hz 的间离也非常接近。
这部分的内容可以帮助我们定义模态的下限。这个就比较重要了。
注:对“接近”的理解,来自:《从这里学 NVH——噪声、振动、模态分析的入门与进阶》,如果对模态分析感兴趣,一定要看这本书!
想要判断仿真的结果那些值是有意义的。
模态分析的真实意义:
频率和振形
首先我们知道云图中的数值是没有意义。
频率要接近,同时载荷的分量要和震动的方向一致(力是相关的)
大多数产品共振是一定要避免的,但是如何降低震动就需要后面的讲解,因此模态分析知识振动分析的前置模块。
共振在有限元中的展示
本章节下面的重点就是在仿真中还原如下如所示的共振模型:
问题描述:
按照之前分析的音叉的固有频率:
分别使用100Hz,230Hz,442Hz和1760Hz的20N冲击载荷,沿Y方向敲击音叉端部,求解音叉的振动。
音叉材料:结构钢
分析:
100Hz的时候没有与音叉固有频率相接近的频率点;
230Hz与1阶2阶的频率相接近
442Hz与4阶的频率相接近
1760Hz与6阶固有频率相接近
查看音叉1/2/4/6阶的模态的振动变形方向中:
1阶:主要的变形方向是Z向
2阶:主要的变形方向是Y向
4阶:主要的变形方向是Y向
6解:主要的变形方向是Z向
通过上面的分析我们只能猜测出大概率发生共振,但是不能准确的评价出结果。
如下图所示的是载荷的施加:
在计算每一个工况的时候,按照如上的数值进行设置就可以。这里注意一下如何将表格里面的数据复制到软件中。
计算结果如下:
如上的结果就是一个共振的结果,一高一低的原因是方向不同造成的。随着时间越来越长就会出现如下的结果:关于230Hz到底是和那一阶的频率发生共振就要看和谁更接近。
其实1760Hz是没有办法产生共振的。
通过上面的分析我们发现了一个问题,如果我需要把前10阶的都验证一下,那么整个仿真的计算量是非常大的。我们需要采用另一种计算方法来分析是否发生共振。因此我们采用扫频的方法研究整个结构的共振。(后续会有讲解)。
1.4 模态分析
1.4.1 模态分析参数
补充查看方法
清楚每种类型的算法类型。
模态分析得到的振型数值是归一化的数值,即为相对值而非绝对值,同时振型是一个矢量,具备方向性。
实际工程中,经常需要对载荷激励下模型所产生的响应进行分析,该响应是一个绝对值,为由激励的各阶模态引发的各阶响应之和(线性叠加),各阶振动响应等于各阶模态乘以相应的加权系数。
各阶模态的加权系数的数值与输入激励载荷的大小、数量、位置与频率等因素有关。
1.4.1.1 参与系数 Partic Factor(质心的位移)
每个质点质量与其在某阶个振型中相应坐标乘积之和与该阶振型模态质量之比。
模态计算后除了能够获取结构的固有频率和振型外,还有参与系数与有效质量,
其中参与系数的计算公式:
其中,{D}为总体笛卡尔坐标系中三个平动和三个转动的单位位移(归一化)
-
参与系表示某阶模态在某个方向上的质量运动,可以用来表征在某一特定方向上某个振型在多大程度上参与了振动。
-
某一个方向的参与系数值越大,则表明如果在这个方向受到动载荷的作用下,则结构的振动响应越大。
注意结构实际中有无穷阶模态,例如地铁晃动是由无穷阶晃动造成的,通过查看振型参与系数可以看出某阶模态在某一方向的多大程度的参与了振动。值越大参与度越大。
1.4.1.2 比率 RATIO
表示振型参与系数与一阶振型参与系数之比,用以了解振型参与系数的分布。
一般地,振型阶数越高其参与系数越小,因此在实际动力反应计算时常常忽略高阶振型的影响,而仅取少量的低阶振型计算。
模态形状比率(Mode shape Ratio)
是描述不同模态在结构各个自由度上的振动模式(即振型)之间相对关系的一个重要量度它表示:
在不同模态下,相同自由度的振动幅度的比例,通常用于研究不同模态的相对影响,以及模态之间的相似度或差异。例如:
在模态分析中,每个模态都有一个对应的振型(即模态形状),它描述了结构在某一固有频率下的振动分布。模态形状比率通过比较不同模态在同一自由度的振动幅值,揭示了模态之间的关系。例如,当不同模态的形状非常相似时,它们的模态形状比率接近于 1,表明这两个模态能在同一频率范围内共振。
模态形状比率的定义
假设我们有两个模态$$i和j$$,它们的振型分别为φi 和φj。模态形状比率可以是义为这两个模态在某个自由度 k 位置上的振动位格的比值:
模态形状比率=(φi(k))/(φj(k))
其中:
φi(k)和φj(k)分别是第 i 和第 j 个模态在自由度 k 上的位移分量;
k 表示结构的自由度,可以是某个节点的位移或其他相关物理量。
模态形状比率的物理意义
模态形状比率反映了不同模态在某一特定自由度或位置上的相对振幅,
它有助于理解以下几个方面的动力学特性:
模态相似度:如果两个模态的形状比率接近下 1,则说明它们在结构上的振动模式很相似。这通常意味着这些模态在某些频率范围内可能存在耦合,或者它们的振动影响可能是重叠的。
模态间的独立性:如果两个模态的形状比率相差很大(例如接近 0 或无关),则说明它们在结构上的振动模式相差很大,通常可以认为它们在动力学响应中是独立的,不会相互影响。
模态耦合与共振:当两个模态在某些频率上有类似的振动形状时,可能会发生模态耦合或共振现象,此时,模态形状比率有助于预测结构在特定频率下的动态响应特知是,如果两个模态的振型相似,并且它们的固有频率接近时,可能会导致较大的振动响应。
1.4.1.3.有效质量 Effictive Mass
本节内容汇聚成一句总结:
一言概述有效值就是等于参与系数的平方,有效质量之和等于结构的总质量。
有效质量的定义:
参与模态响应的那部分质量,模态有效质量<结构总质量,每阶模态都有自己对应的模态有效质量,有效质量大的更容易被激励起来,有效质量小的难以被激励起来,所有的模态有效质量之和等于该结构的实际物理质量,通过模态有效质量可以判定哪阶模态“更重要”。
有效质量的计算:
有效质量是指在特定模态下,结构的各个部分所携带的质量对该模态振动的贡献。有效质量表示的是在该模态下,结构所振动的质量和该模态的振动特性之间的关系。它量化了结构在特定模态下的能量存储能力。
具体来说,有效质量是通过对结构在某一模态下的各个节点质量和节点位移的平方和进行加权计算得到的。有效质量与振型的密度分布密切相关,因为不同的振型可能导致不同部分的结构发生不同程度的位移。
模态计算中的有效质量计算公式:
由于程序模态计算时,各个振型关于质量矩阵进行归一化,
即则,有效质量可简化为
理想情况下,每个方向的所有有效质量之和等于结构的总质量,但是这个取决于模态计算提出的模态阶数;
-有效质量与结构总质量的比值对于确定提取的模态数量是否足够,非常有帮助。
有效质量的意义:
振型分布:有效质量越大的模态,表示该模态的振动模式对于整个结构的贡献越大,尤其是大位移区域的节点质量贡献较大。在某些模态中,部分结构可能会几乎不发生振动,导致有效质量较小。
能量分布: 有效质量与结构的振动能量分布密切相关。结构在某个模态下的振动能量主要由有效质量控制。在设计过程中,理解和计算每个模态的有效质量有助于预测振动响应和控制措施。
模态贡献: 每个模态的有效质量能够反映该模态在结构响应中的重要性。如果某个模态的有效质量较大,表明它对系统的动态行为有显著影响,可能在系统的响应中占有主导地位。
有效质量与模态的关系:
在多模态分析中,多个模态可能同时存在,并且每个模态的有效质量有所不同。模态的有效质量受多种因素的影响,如:
振型的形状: 对于不同的振型,结构中不同部分的质量对模态响应的贡献程度不同。较大位移的区域通常有较大的有效质量。
质量分布: 如果结构的质量分布不均匀,则质量较大的部分对某些模态的有效质量贡献较大
固有频率:不同的模态对应不同的固有频率,通常较低的频率模态有效质量较大,因为低频模态往往涉及结构的广泛振动,而高频模态则局部化,可能只影响少部分区域。
为什么模态分析有效质量与总质量的比例系数要达到 0.9 以上?
响应谱分析是采用模态叠加法进行动力学(谐响应、响应谱、随机振动)分析,模态分析有效质量与总质量之比直接影响求解精度,一般要求该系数达到 0.9(帮助文档指标要求,在周炬的书中写的是 0.85)以上。对于三维实体模型进行模态分析时,通过调整法模态阶数使该比值达到要求值,有时需要上百阶的模态才能使该系数达到 0.9,因此一定不要直接使用默认的阶数(6 阶)。模态分析存在 6 个方向(3 个平动、3 个转动)的结果,如果 6 个方向的比值都能大于 0.9 是非常完美的,然而却非常难以达到。阶数的提高意味着计算时间、计算量的增加,在实际工程使用是,针对主要激励方向,重点保证此方向的比值。
1.4.1.4 累加质量因子 Cumulative Mass Fraction
表示从第一阶到该阶振型等效质量之和与总等效质量之比,也称为有效质量系数,该值在一定程度上可判断所提取的振型数是否足够。
累计质量分数表示的是每个模态在所有模态中所占
1.4.1.5 阵型等效质量与总质量之比(RATIO EFF. MASS TO TOTAL MASS )
通常我们称之为质量参与系数
质量参与(Mass Participation)是描述在不同振动模式中系统质量是如何参与到每个振动模式中。通过质量参与的分析,可以了解系统的振动模式和质量分布,从而预测系统在动态负载下的响应。
1.质量参与的定义
质量参与是指在振动模态分析中,各个振动模式对整体质量的贡献程度,它通常以质量参与系数(MassParticipation Factor)来量化,反映了在某个模态下,每个自由度所涉及的质量比重。在模态分析中,每个振动模式是由系统自由度(通常是节点或元素的位移)所定义的,而质量参与系数则表示各个自由度在该模式中的质量参与情况。
2.如何计算质量参与系数
质量参与系数通过模态分析中的质量矩阵和刚度矩阵进行计算。
质量参与系数的计算基于以下步骤:
模态分析:通过解特征值问题,得到振动模式(模态位移)和对应的固有频率。
质量矩阵:有限元分析中,质量矩阵描述了系统各个自由度的质量分布。质量矩阵可以是“常规”的质量矩阵(通常是由节点的质量构成)或者“惯性“矩阵。
质量参与系数的计算:质量参与系数可以通过以下公式计算:
$$MPF_i=(φ^T_iMφ_i)/(φ^T_iKφ_i)½$$
其中:
$$φ_i$$:第i个振动模式的模态位移向量
$$M$$:质量矩阵
$$K$$:刚度矩阵
通过计算不同振动模式的质量参与系数,可以知道每个振动模式中质量分布的情况。
3.质量参与的应用
在有限元分析中,质量参与的分析具有以下几个主要应用:
模态分析和振动分析
质量参与帮助了解不同振动模式中哪些自由度(节点、元素)对振动起到了主要作用。通过分析质量参与系数,可以识别出系统中具有高质量参与的振动模式,从而重点关注这些模式对系统动态响应的影响。
动态响应预测
在动态分析中,特别是受到外部激励的情形下,质量参与有助于识别和优化与特定激励频率相关的振动模式。例如,当系统受到外部激励(如地震波、风载等)时,了解哪些模态的质量参与系数较大,能够预测哪些模式将对系统的响应产生显著影响。
简化模型和优化设计
质量参与分析有助于识别出不太重要的振动模式,从而在有限元建模中可以选择忽略这些模式,简化模型。这对大规模系统尤其重要,能够减少计算量并提高效率
系统的阻尼和减振设计
在振动控制和减振设计中,理解质量参与有助于为结构设计提供指导,确保设计的阻尼或减振措施有效地减少主要振动模式的响应。
频率响应分析
在频率响应分析中,质量参与系数的高低也会影响频率响应曲线。了解各个模式的质量参与有助于优化系统的频率响应,确保结构能更好地应对特定频率范围内的外部激励。
4.质量参与与有效质量的区别
质量参与:描述了各个振动模式中,系统的质量是如何分布的。它反映了不同自由度的质量对特定振动模式的贡献。
有效质量:有效质量主要考虑特定模式下,哪些质量对于该模式的响应是“有效的”,即它衡量了该模式对系统动态响应的实际贡献。
5.举个例子
假设我们正在进行一个汽车车身的模态分析。通过计算质量参与系数,可能会发现低频的振动模式(例如车身的第一阶模态)具有很高的质量参与系数,这意味着车身的质量主要参与了这些低频模态的振动。而高频模态的质量参与系数可能较小,表明它们对整体系统的动态响应贡献较少。因此,在进行减振设计时,我们可能会更加关注低频模态。
6.总结
在有限元分析中,质量参与是分析系统动态行为的重要工具,能够帮助我们了解不同振动模式下质量的分布,进而识别出系统中主要的振动模式和影响因素。通过合理的质量参与分析,可以优化模型设计、提高计算效率,并为实际的动态控制、减振和结构优化提供指导。
7.音叉实例说明
如下图所示的是音叉的不同阶数的振型图:
那么这些振型能给我们传递一些什么样的信息,我们下面介绍一下:
直观上我们只能看到的是音叉的振型状态,除此之外很多消息都要通过后台的信息中获取了(求解方案信息)。其中一个和我们选择模态阶数强相关的量就是我们上面介绍的质量参数。如下表所示:
通过如上的后台数据我们可以了解到每阶的质量参与系数是多少,下面我们介绍如何根据计算出来的质量参与系数将模态需要输出的频率算准:
观察后台的计算结果我们知道,X方向的最终的质量系数在20阶的时候是81.2%。
但是本工况的载荷是基于Y方向的,因此可以重点关注Y方向才是我们关注的重点。有时候我们需要确保关键方向上的质量参与系数达到80%(这是一个最低的要求)。
通常我们有如下的标准:
频域分析中的质量参与该如何保证
一般情况下:
-
最高精度保证,保证XYZ三向的质量参与达到90%;
-
一般精度保证,保证XYZ三向的质量参与达到80%;
-
最低精度保证,关键振动方向的质量参与达到80%。
对于约束过多的模型,尽量评估不参与振动部分的质量比,参与振动部分的质量比按照以上三点进行。
如果,我把振动无穷算,最终的结果会不会达到1?
质量参与和固定约束的关系,由于固定约束的存在,该位置的质量一定不会参与振动,因此约束点越多越难接近1。在计算之前可以自己先估计一下质量参与系数是多少,这个时候就可以不按照上面的标准去评估。
质量参与在频域分析的时候,如果没有办法理解的话,后续的很多内容无法展开,这部分内容应该引起重视。
通过如上的标准我们可以判断出大概需要就算多少阶模态。
质量参与一定是频域分析中非常重要的一个概念。
实例分析:
如下图所示是典型音叉工况前20阶的计算结果:
如上所示,如果按照我们之前标准要求三个方向都满足80%的模态频率为9381Hz。但是我们还要找到哪些关键方向(X方向和Y方向)达到80%,同时还要找到关键方向接近80%的频率。由于频率越大计算量也越大,因此通过分析我们可以得出前6阶就可以求解出比较准确的结果。
如上所述就完成了频率的选择。
1.4.2 模态提取方法
在大多数情况下,建议用户选用 Program Controlled(程序推荐)选项,程序会自动优化进行选择算法。
(1)Block Lanczos(Direct)
-能够处理对称矩阵;
-是一种功能强大的方法,当提取中型到大型模型(50000 ~ 100000个自由度)的大量振型时(40+),这种方法很有效;
-经常应用在具有实体单元或壳单元的模型中;
-可以很好地处理刚体振型;
-需要较高的内存。
(2) PCG Lanczos(Iterative)
-能够处理对称矩阵,但是不用于求解屈曲模态;
-适合求解中等到大规模的模态计算问题,提取的模态阶数高于100阶;
-适合于网格划分形状较好的三维实体单元;
(3) Unsymmetric
-能够处理非对称矩阵;
-模态计算中使用完整的刚度和质量矩阵;
-适合求解K和M为非对称矩阵的问题,如流-固耦合的振动,声学振动;
-计算以复数表示的特征值和特征向量:
--实数部分就是自然频率;
--虚数部分表示稳定性,负值表示稳定,正值表示不确定。
(4) Supernode
-能够处理对称矩阵,但是不用于求解屈曲模态;
-适合求解大规模的模态计算问题,提取的模态阶数高于100000阶;
-主要应用于二维平面,壳体/梁结构(提取模态阶数高于100)和三维实体结构(提取模态阶数高于250);
如果结构中存在阻尼,则将阻尼选项设置为yes,然后选择相应的方法进行求解。
(5) Full Damped
-适合求解中小规模的模态计算问题,提取的模态阶数不高于10,000阶;
-采用完整的([K], [M],[C]) 矩阵;
-能获得全部中小规模的模态。
(6)Reduced Damped
-采用无阻尼系统的前若干特征值(由Block Lanczos method求得)近似表征有阻尼结构的前若干复模态特征值;
-计算精度取决于提取的模态数目,所以建议提取足够多的模态,特别是阻尼较大的系统更应当如此;
-该方法不建议用于提取临界阻尼或过阻尼系统的模态;
-该方法输出实部和虚部特征值(频率),但仅仅输出实特征向量(模态振型)。
1.4.3 模态计算中接触设置
模态计算中可以定义不同结构之间的接触,但是因为模态计算是一个纯线性分析,因此模态计算中接触定义与其他非线性问题中定义中的接触不同,模态计算中接触的具体设置如下:
详细介绍可以看接触专题中的介绍,相关链接如下:
1.4.4 模态计算设置
1.4.4.1 选项(Options)
-用户需要指定模态计算过程中提取的模态阶数,程序默认是计算前6阶结构固有频率和模态振型;
-设置提取模态计算中的固有频率方法有:
--设置模态提取阶数;
--定义感兴趣的结构固有频率范围。
-
最大模态阶数 (Max Modes to Find)
默认是提取前 6 个固有频率。在分析中最大模态阶数一般采用试算进行设置,使最后一阶模态计算结果符合 1.5 倍原则。(可根据实际情况进行调整)
结合限定最大阶频率值,确定最大阶模态阶数。
-
限制搜索范围(Limit Search to Range)
可以设置搜索的频率范围,下面是频率范围的设置;通常可以选择否。
-
范围最小(Range Minimum)&范围最大(Range Maximum)
1.4.4.2 求解器控制(Solver Controls)
程序提供了两种求解控制方法:考虑阻尼和不考虑阻尼
-程序默认不考虑阻尼,如果需要考虑则进行激活;
-然后选择对应的模态计算方法,建议使用程序控制即可。
-
阻尼(Damped)
详细介绍见如下链接:
模态系统是无阻尼的还是有阻尼的。根据您的选择,将提供不同的求解器选项。默认有阻尼,设为 No,并假定模态系统为无阻尼系统。
阻尼设置默认为 No,表示模态系统为无阻尼系统,设置为 Yes 时需用对 Damping Control 进行设置阻尼系数,设置刚度系数方式有两种,我没有使用过不做详细介绍,感兴趣可以在帮助文档搜一下。
注:当复杂装配体考虑阻尼时,进行动力学分析速度会非常非常... ... 慢,一般我会忽略阻尼影响。但对于减振分析时,阻尼是无法忽略的因素,建议对阻尼连接区域进行局部分析。
阻尼控制
恒定结构阻尼系数(Constant Structural Damping Coefficient)
刚度系数按照以下方式进行定义(Stiffness Coefficient Define By)
刚度系数(Stiffness Coefficient)
质量系数(Mass Coefficient)
-
求解器类型(Solver Type)
求解方法 | 说明 |
Direct ( Block Lanczos) | 求解自由度 5 万 -10 万,阶数大于 40 的实体和壳模型,且网格质量较差也可以较好求解 |
Iterative (PCG Lanczos) | 常用于求解自由度超过 50 万,阶数小于 100 的实体和壳模型,网格质量要求必须较好。 |
Unsymmetric | 常用于求解流固耦合和具有不对称质量矩阵和刚度矩阵的问题,但求解结果中可能会忽略高阶频率。 |
Supernode | 模态阶数在 100~10000,任意类型模 |
Subspace | 常用于求解阶数小于 40 的实体和壳体,网格质量必须要求较好,但求解过程中有可能会由于刚体模态而导致不收敛。 |
这部分的详细介绍见链接:
1.4.4.3 转子动力学控制 (Rotordynamics Controls)
-
科里奥利效应(Coriolis Effect)
-
Campbell 图(Campbell Diagram)
1.4.4.4 高级(Advanced)
1.4.4.5 输出控制(Output Controls)
默认情况下,程序只输出模态振型和固有频率;用户也可以设置输出应力和应变;
注意:模态计算中的应力和应变只是一个相对值,不是真实的应力值;应力值并没有实际意义,但如果振型是相对于单位矩阵归一的,则可以在给定的振型中比较不同点的应力,从而发现可能存在的应力集中。
在模态分析中输出模态振型,打开设置可以计算应力和应变结果,
注:应力结果显示应力在结构中的相对分布,而不是真实的应力值。
咦,我怎么忘记写模态振型云图也不是真实的变形量分布,而是结构中的相对分布
1.4.5 求解结果分析
模态分析计算结果的振型是结构自由度的数学体现。产生共振必须激励自由度与振型相匹配,不仅是频率的对应关系。
同时由于振型反应模型自由度,因此在多部件复杂接触模型分析之前,最好进行模态分析。通过振型可以非常清楚地观察到模型接触状态,检查出接触遗失出现和约束不足的位置。
另外通过振型显示可以发现,模态存在全局模态和局部模态。局部模态是指模态仅在小部分表现明显的幅值。即振型仅在结构的某些局部区域内存在响应,而在大部分区域,振型对结构的响应几乎为 0。
在循环周期对称模型的模态分析中最容易出现局部模态现象。一般而言,对于结构的整体动力学分析可以忽略局部模态的影响,但是如果多阶振型均反映相同局部区域的局部模态,这代表该区域刚度较小且对缺陷或扰动非常敏感(类似于屈服),则必须对其进行设计修正。
补充:网格
在模态分析的计算结果中,低阶频率表现为网格无关性,即网格疏密对模态计算的低阶频率和振型结果影响不大,但网格疏密对模态计算的高阶结果有较大影响。如果网格比较疏,那么不仅求解的频率有偏差,振型也会出现错误。
我在复杂装配体进行模态分析时经常偷懒,直接采用默认设置直接网格划分... ...
1.5 有应力结构的模态分析方法
什么是有预应力的模态分析? 为什么要做有预应力的模态分析?
同样的结构在不同的应力状态下表现出不同的动力特性。
例如
一根琴弦随着拉力的增加,它的振动频率也随之增大。
涡轮叶片旋转时,由于离心力引起的预应力的作用,它的自然频率逐渐具有增大的趋势。
为了恰当地设计这些结构,必须要做具有预应力和无预应力的模型的模态分析。
有预应力结构的模态分析,需要执行两个迭代过程:
首先进行静力分析:
[K]{$$x_0$$}={F}
基于静力分析的应力状态,得到应力刚度矩阵[S]:
[$$σ_0$$]→[S]
接着求解预应力模态分析,原来的模态分析方程中包含了[S]:
([K+S]-$$w^2_i$$[M]){$$∅_i$$}={0}
结构模态在不同载荷条件下呈现出不同动力学特性。例如琴弦在外载拉力作用下,刚度变大,固有频率也相应变大,风力发电机叶片在旋转时,刚度变小,固有频率减小。
说明外载荷对模型的固有频率是有影响的,分为两种状态:应力钢化和旋转软化。
由于模态分析中无法不能加载外载荷,因此可采用预应力模态分析。即通过静力学分析得到结构模型的刚度,再用此刚度计算模态。
具有预应力的结构是模态分析,结构中的应力可能会使结构刚度发生改变。
同样的结构在不同的应力状态下表现出不同的动力特性。
注:预应力模态分析先进行静力学分析,再关联模态分析,在模态分析与静力学分析关联时,旋转速度载荷在模态分析中不可用。在进行带有预应力的模态分析时,打开大变形效应,模态分析结构针对原几何模型,而不是静力学变形后的几何模型。
所谓的打开大变形就是要计算几何非线性,这里还是补充的
弹性刚度,应力刚度,
举例:
1.6 非线性模态及其求解方法(线性摄动法)
机械系统的特点是由多个零件通过各种方式联接起来的一个系统。机械系统的性能分析除了零件的性能分析以外,零件之间的联接特性的分析也是一个重要方面。零件之间的联接性能分析,本质是一个接触问题的分析,是机械结构非线性分析的一种典型类型。线性系统的模态分析技术是了解线性结构振动特性的一个重要手段,已经广泛应用在结构动力修改优化设计、故障诊断、状态检测等诸多领域。近年来,以非线性动力学理论为基础的非线性模态分析逐渐成为非线性振动研究中的热点之一。其原因是机械工程中存在着大量的非线性问题,传统的线性模态分析技术无法得到准确的结果。解决机械系统中的非线性问题,首先要面对的就是如何处理结构间的非线性的接触问题。
常采用预应力模态分析法破解该问题。
对于非线性问题,其平衡方程为:
[K]{u}={$$F^a$$}
其中:
[K] 刚度矩阵并且是位移{u}的函数;
{u} 未知的位移
{$$F^a$$} 施加的载荷矢量
ANSYS使用Newton-Raphson来求解(11-126)式,其选代过程可以写作:
其中:
[$$K^T_t$$] 雅克比矩阵,即切线刚度矩阵;i-表示当前的平衡迭代;
[$$F^{nr}_t$$] 存储与单元内部载荷相关的矢量。
非线性模态计算就是如何考虑非线性计算中的切向刚度矩阵,为此ANSYS提供了线性摄动法解决这一问题,其原理是基于前一个线性或非线性求解的结果来计算下一个线性问题。
总体切向刚度矩阵
然后利用线性摄动方法,采用两个分析步骤,第一步进行静力学分析,可以考虑大变形,预应力,超弹材料,接触(摩擦),然后将该步生成的刚度矩阵,作为模态求解的刚度矩阵,就引入了模态分线性。对于无阻尼模态的控制方程:
对于无阻尼模态的控制方程:
对于有阻尼的模态控制方程:
Pre-Stress Define By:
理论上可以采用任何一个子步计算的刚度值进行模态分析。但是软件默认的是最后一个子步的计算结果去进行模态分析。
– Program Controlled by default (uses the last solve point available in the parent static structural analysis as the basis for the modal analysis
采用静力分析最后一个载荷步或子步得到的应力刚度进行模态分析.
Time:
• 读取静力计算的某个时间点的系统刚度。
无论Load Step还是time,默认读取系统最后的计算刚度,如需读取中间过程的系统刚度,需在静力分析中的重启动中进行设置。有时候最危险的状态不一定是最后一步计算的刚度。
下面介绍接触非线性的相关内容:这部分可以生乳一点
Contact Status:
Use True Status (default): 通常的设置
– 调用某个过程点的系统刚度(线性或非线性)用于线性摄动分析.
Force Sticking: (紧贴着,可以有滑动)
– 只用于摩擦系数大于0的接触。
– 当接触状态处于滑移状态时,其系统刚度还包括粘结接触刚度。
Force Bonded:(绑定)
– 用于接触对为闭合状态(粘结或滑移)的工况。
1.7 湿模态理论及其求解方法21
这部分先忽略
1.6 模态分析实例
1.6.1 自由模态分析介绍
自由模态定义:
简单讲自由模态没有任何约束和载荷。
同一个结构在不同的边界条件下,模态参数是不相同的。很多情况下, 结构实际工作条件下的边界并非自由边界, 那为什么还要做自由边界条件下的模态分析?
当对自由边界的结构施加约束时, 随着约束刚度的增大,结构的刚体模态会逐渐向弹性模态转化。对同一结构,从自由边界变换到约束边界,是对结构进行了动力学修改,那么修改后的约束边界下的模态可以通过修改前的自由边界的模态的叠加得到。自由模态比约束模态更容易实现。不管是试验模态(试验模态需要夹具是一种弹性体)还是计算模态,约束边界都要更困难些。另一方面, 自由模态不仅有弹性模态, 还有刚体模态, 而约束模态只有弹性模态。虽然同一结构的约束模态与自由模态的模态参数完全不同, 但现实世界中很多情况下仍然做自由模态分析。
注:对飞行器、航天器以及舰船模型工作中并不存在约束,适用于自由模态分析。
当结果计算完成之后,按住 Shift 选择如下框框中的所有结果,然后右键单击鼠标选择创建模型形状结果,在项目栏中就会生成各阶频率下的总变形。
自由模态下的频率结果:
一个物体向单一方向运动(没有约束):
振动周期:T=无穷大,
频率:f=1/T=0,
所以单一方向的运动就是周期为无穷大的振动形式。
振动的一种特殊情况。
刚体模态(rigid body modes):
是指物体在振动分析中,所有质点以相同的方式共同运动的模态。在刚体模态下,物体的形状保持不变,但其质点在空间中整体做平移或旋转运动。简单来说,刚体模态就是物体作为一个整体“移动“而不发生变形。
刚体模态通常包括两类:
-
平移模态:物体在空间中做平移运动,所有质点沿着相同的方向以相同的速度移动。这些模态与物体的质量分布和惯性相关。
-
旋转模态:物体围绕某一轴旋转,物体的质点绕着旋转轴转动,形状不发生变化,
在振动分析中,刚体模态通常作为零频率的模态存在,因为它们不涉及物体的形变,只是整体的平移或旋转。一般情况下,在正常的模态分析中,刚体模态是被单独处理的,因为它们不包含与物体的弹性变形有关的信息。
1.6.2 约束模态分析介绍
1.6.3 典型工况分析
工程实例 -1:基于模态理论的车轮选型分析
工程实例 -2:刹车盘摩擦啸叫的非对称复模态计算
工程实例 -3:风扇模态的应力刚化和旋转软化效应分析
工程实例 -4:橡胶支撑结构的非线性模态计算
工程实例 -5:多盘转子结构的临界转速计算
工程实例 -6:盛水水槽的湿模态计算
1.7 仿真分析步骤补充
模态分析基本步骤
-
新建模态分析
-
导入模型
这里注意:不同零件之间的相互连接关系,实体模型直接选择共节点方式连接(固连)
-
添加材料
-
划分网格
-
载荷和约束
-
分析设置
详细介绍见链接: