基本度量
访客数(Visits)/ 访问次数(Viewer View) 代表在一个给定的时间段内所有会话的数量。会话在用户请求站点的第一个页面时,就开始了。除非访客退出站点,关闭浏览器或若干时间(30min)不活跃以后,会话会被服务器终止。 |
---|
唯一访客(UV) 用于确定再一个给定的时间段内到达站点的唯一访客,即弄清楚用户重复访问的数量和自然人访问站点的数量。这个度量通过用户浏览器中设置的临时cookie跟踪,代表在一个给定的时间段内所有唯一的cookie_id的数量。 |
重复访问率(Repeat Visitor Rate) RVR = V/UV*100% 要注意分母采用的是真唯一访客还是假唯一访客。这需要对cookie验证信息进行筛选来区分。 在确定以上这三个度量的时候,由于涉及到cookie以及对cookie的分析,要特别注意几点:
如果cookie被拒绝,或者因为采用第三方cookie被用户浏览器或安全软件阻止,那么该用户的每一次访问都被服务器认为是一个新的UV,如果这种情况变多同时又不能通过时刻检查cookie拒绝率来识别,会对数据造成不小的影响。 |
访问时长(Time on Site) 一 般来说,访问某个页面的时长可以从访问另一个页面的时间戳来获得——用访问B页面的时间戳减去访问一开始A页面的时间戳就得到了在A页面停留的时长。非常 简单明了,不是吗?可是在默认的情况下,这种方法没有办法测量用户访问的最后一个页面停留的时长。因为写在服务器页面上的JavaScript标签无从了 解什么时候这个用户点击了别的站点的URL,或者什么时候关闭了浏览器。因此最后一个页面的访问时长几乎不可能被测量。 使用一些特殊的、非标准的JavaScript方式可以某种程度上解决这个问题。通过执行一个onLoad事件,JavaScript标签可以告诉服务器访客是否离开了网页或者关闭了浏览器。但是这种方法也不能识别那种把网页开着,然后一走了之的用户的情况。 一个比较明显的例子是一些博客网站,它们主要的信息都可以在首页了解到,因此绝大多数的访客不会点击进入二级或者更深层的页面进行访问。那就意味着大多数的访问都是这种只有一个访问页面,难以判断访问时长的情况。一般来说,这些情况的访问时长会判定为0秒。 可以看到去除了只浏览一个页面的访客以后,显著增加的平均访问时长。考虑到大多数的访客都是这种被统计为ToS = 0的访客,平均值的大幅上升也不足为奇。 那么...访问时长越高越好吗? 统计数据和网页的目的需要有足够的关联。比如客户服务和在线支付的页面,一般来说我们希望访问时长越短越好。又比如浏览商品详情或者显示专栏文章的页面,我们又希望访问时长越长越好。ToS尽可能反映访客真实的情况,从而帮助我们做出更加高效的网页。 |
浏览量(Page View) 在 人们刚开始分析Web日志的时候,命中数(Hits)被用于统计用户访问某一个站点页面的数量,因为当时的请求还只是获取一个个的html页面。如今越来 越复杂的页面不允许我们再靠命中的统计来判断访问量了——往往一个页面包括几十个命中,通过这些请求从服务器获取元素组成完整的页面。所以,现在采用统计 在给定的会话中,用户访问的页面数量来判断页面访问量。不过,现在的复杂页面能让我们在同一个URL下实现以前需要很多个URL才能达成的效果,这也意味 着不能再拿URL甚至是URL参数来判断一个页面(Ajax)了 |
跳出率(Bounce Rate) 代表在站点上停留时间短于10秒的访客和总访客的比率。在Web Analytics一书中,作者认为10秒是一个用户有效接收页面信息的阈值。作者还指出,如果必要的话这个时间也可以调整。并且,使用时间而不是页面访问数量来计算跳出率更加好。 之前提到了转化率——一个重要的衡量站点营业情况的指标。 光从转化率上来看,上图的邮件营销是最为有效的宣传方式(32.3%转化率)。但是如果考虑到跳出率,邮件营销也拥有最高的跳出率(62.3%)。 结合之前的页面访问时间度量,跳出率可以更加准确地识别出主要的网站用户群体。 |
来源和搜索引擎关键字(Source and Source Engine Keywords) 也许当一个顾客走进一家商店,一脸茫然时,精明的店员会根据他的经验猜到这位顾客的需求和喜好。当然,大多数时候这些实体店是无从了解一名陌生顾客的偏好 的。Web站点和这些商店很类似,它提供一个平台,展示一些信息,以期达成一些交易。每个访客请求站点的主页时,他的信息就开始被站点所收集。不仅是用户 的基本信息,对于网站来说了解访客是通过什么渠道获得站点的信息和从什么地方(URL)跳转到自己页面的都是非常重要的数据分析过程。不幸的是,大约只有 40%-60%的来源能够被正确的显示,其余的都被如用户浏览器设置,跳转方式等阻碍而显示为null。 |