AI 后端
文章平均质量分 95
Python, node.js, Java
程序员义拉冠
专注于软件开发与系统架构,深耕企业级应用与技术实践,持续探索 AI 前沿。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
FastAPI + Pydantic 防御式编程:90% 的人第一步就错了
看完本文,你会用 Pydantic 把各种“奇葩请求”挡在门外,让接口更稳、报错更清楚。原创 2025-12-21 09:54:35 · 1080 阅读 · 0 评论 -
FastAPI 异常处理最佳实践:这套代码模板让你不再 996
本文介绍了如何构建完善的异常处理系统,文中使用的代码模板可直接使用原创 2025-12-15 12:50:34 · 1108 阅读 · 0 评论 -
改一个需求动 23 处代码?你可能踩进了这个坑
设计模式的价值,不在于代码变少,而在于改动变少。当你能做到「加功能只需加代码,不需改代码」的时候,你就真正理解了设计模式的精髓。而这,也是区分「写代码」和「做工程」的分水岭。原创 2025-12-14 10:36:44 · 1354 阅读 · 0 评论 -
我用 5 个 AI 编程助“手搓”一个企业服务:真实体验报告(含踩坑)
本文分享了使用5款AI编程助手(Claude Code、Cursor IDE、GitHub Copilot等) 在一周内完成企业级对账报表服务的开发经历。原创 2025-12-12 14:52:01 · 1003 阅读 · 0 评论 -
与模型打交道(2)| PyTorch 显存 OOM 频繁?4 个策略让你的 GPU 稳定运行 AI 大模型
文章讲述了AI工程师小禾在解决LLM服务显存泄漏问题的过程。凌晨3点因GPU显存溢出导致服务崩溃后,小禾发现三个关键问题:未释放的张量、累积的中间变量和不受控的并发请求。他通过三道防线解决:1) 用信号量限制并发请求数;2) 增加显存余量检查,拒绝超负荷请求;3) 在每次生成后强制垃圾回收并清理PyTorch显存缓存。这些措施有效预防了显存泄漏,保障了服务稳定性。原创 2025-12-12 11:20:35 · 1025 阅读 · 0 评论 -
与模型打交道(1)| 换了 4 家 AI 模型,代码只动了 1 行——这个架构设计让老板随便折腾
本文讲述了被迫更换4个不同LLM模型的痛苦经历,从GPT-5.1、Gemini 3.0到本地Qwen和Claude,每次更换都需重写47处业务代码。通过分析问题根源——业务代码与LLM实现强耦合,文章提出了适配器模式的解决方案:建立统一的LLM抽象层,定义标准消息格式和生成接口,使业务代码仅依赖抽象接口。以OpenAI适配器为例展示了具体实现,将各平台差异封装在适配器中,实现模型切换时业务代码无需修改。这种架构设计显著提升了系统的灵活性和可维护性。原创 2025-12-11 13:04:31 · 877 阅读 · 0 评论 -
性能追踪 | 用户说这 AI 推理太慢了,但我不知道慢在哪,直到……
3个步骤定位性能瓶颈:1) 添加基础计时中间件,发现总耗时12秒;2) 完善日志中间件,记录请求ID和详细耗时;3) 实现分段计时器,最终确认94%时间消耗在AI模型推理环节。原创 2025-12-10 09:15:59 · 1061 阅读 · 0 评论 -
前端传了个 null,后端直接炸了——防御性编程原来这么重要!
本文介绍了如何使用Pydantic在FastAPI中实现强大的请求参数验证。针对接口开发中常见的奇葩参数问题,作者展示了如何通过Pydantic模型自动验证数据类型、字段必填性、取值范围等。文章详细讲解了基础模型定义、自定义验证器、枚举类型限制以及嵌套模型等高级用法,帮助开发者构建健壮的API接口,有效防范非法参数导致的系统崩溃。通过Pydantic的自动验证机制,开发者可以确保接口只接收符合规范的数据,并自动生成清晰的错误响应。原创 2025-12-10 09:04:09 · 606 阅读 · 0 评论 -
接口报 500 了,日志里却空空的?如何给你的 AI 后端加上「三层防护」
本文带你重构异常处理体系,分为三层防护:全局异常处理器(兜底所有异常并记录日志)、业务异常处理(返回友好提示)、端点级try-except(细粒度恢复)。原创 2025-12-09 15:01:27 · 765 阅读 · 0 评论 -
AI 模型占了 10G 显存,服务重启却没释放?
FastAPI 显存泄漏问题与生命周期管理解决方案原创 2025-12-09 10:44:22 · 908 阅读 · 0 评论 -
AI 返回的 JSON 总是格式错误?我写了个「容错解析器」- 附代码
本文通过一个故事介绍了一个专用于 AI 的 JSON 容错解析器的完整实现。原创 2025-12-04 08:21:43 · 817 阅读 · 0 评论 -
老板说换个 AI 模型,我花了 5 分钟搞定
本文通过程序员小刘的故事,生动讲解了适配器模式的应用场景和实现方法。面对OpenAI、Ollama和NVIDIANIM三种大模型API调用方式不一致的问题,小刘采用适配器模式定义了统一接口ModelAdapter,并为每个模型创建对应的适配器类,将不同API封装成一致的调用方式。结合工厂模式,只需修改配置文件即可切换不同模型,彻底解决了if-else泛滥的问题。文章还强调了错误处理、日志记录和测试Mock三个关键细节,展示了设计模式在实际开发中的强大威力。原创 2025-12-01 22:28:32 · 1123 阅读 · 0 评论 -
为了让 AI 用 5 个姿势生成图片,我差点写了 32 个 if-else
盯着屏幕上的代码金字塔,认真思考了一个问题:是代码先崩,还是我先崩?后来我用了一个"古老"的设计模式,把 32 个分支变成了 6 个独立的类。现在产品经理再加功能,我只需要新建一个文件。改动?不存在的。原创 2025-12-04 08:08:41 · 683 阅读 · 0 评论 -
小孩才用 if-else,来看看成年人怎么做选择
本文详细介绍了简单工厂、注册式工厂、单例工厂和分层工厂等不同实现方式,并提供了根据项目复杂度选择合适方案的决策指南。原创 2025-11-30 13:54:35 · 1331 阅读 · 0 评论
分享