算法模板之Miller_Rabin素数测试(HDU 2138 How many prime numbers)

模板总结归纳:
#define N 10
typedef  long long LL; // 必要时候 unsigned 
LL random(LL n)
{
    return (LL)((double)rand() / RAND_MAX * n + 0.5);
}
LL multi(LL a, LL b, LL m) //计算a * b % m
{
    LL ret = 0;
    while(b)
    {
        if(b & 1) ret = (ret + a) % m;
        b >>= 1;
        a = (a << 1) % m;
    }
    return ret;
}
LL quick_mod(LL a, LL b, LL m) //计算a ^ b % m
{
    LL ans = 1;
    while(b)
    {
        if(b & 1)
        {
            ans = multi(ans, a, m);
            b--;
        }
        b >>= 1;
        a = multi(a, a, m);
    }
    return ans;
}
bool miller_rabin(LL n)
{
    if(n == 2) return true;
    if(n < 2 || !(n & 1)) return false;
    LL m = n - 1;
    int k = 0;
    while((m & 1) == 0)
    {
        k++;
        m >>= 1;
    }
    for(int i = 0; i < N; i++)
    {
        LL a = rand() % (n - 1) + 1;
        LL x = quick_mod(a, m, n);
        LL y = 0;
        for(int j = 0; j < k; j++)
        {
            y=multi(x, x, n);
            if(y==1 && x != 1 && x != n - 1) return false;
            x = y;
        }
        if(y != 1) return false;
    }
    return true;
}

实战模板题 :HDU 2138 How many prime numbers
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
using namespace std;
#define N 10
typedef  long long LL; // 必要时候 unsigned 
LL random(LL n)
{
    return (LL)((double)rand() / RAND_MAX * n + 0.5);
}
LL multi(LL a, LL b, LL m) //计算a * b % m
{
    LL ret = 0;
    while(b)
    {
        if(b & 1) ret = (ret + a) % m;
        b >>= 1;
        a = (a << 1) % m;
    }
    return ret;
}
LL quick_mod(LL a, LL b, LL m) //计算a ^ b % m
{
    LL ans = 1;
    while(b)
    {
        if(b & 1)
        {
            ans = multi(ans, a, m);
            b--;
        }
        b >>= 1;
        a = multi(a, a, m);
    }
    return ans;
}
bool miller_rabin(LL n)
{
    if(n == 2) return true;
    if(n < 2 || !(n & 1)) return false;
    LL m = n - 1;
    int k = 0;
    while((m & 1) == 0)
    {
        k++;
        m >>= 1;
    }
    for(int i = 0; i < N; i++)
    {
        LL a = rand() % (n - 1) + 1;
        LL x = quick_mod(a, m, n);
        LL y = 0;
        for(int j = 0; j < k; j++)
        {
            y=multi(x, x, n);
            if(y==1 && x != 1 && x != n - 1) return false;
            x = y;
        }
        if(y != 1) return false;
    }
    return true;
}

int main()
{
	LL n, m;
	while(cin >> n)
	{
		LL ans = 0;
		while(n--)
		{
			scanf("%lld", &m);
			if(miller_rabin(m)) ans++;
		}
		cout << ans << endl;
	}
	return 0;
} 
另附一博客: Miller_Rabin素数测试算法模板对比
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值