概述
在做大数据产品时,如ad hoc查询平台:页面上有一个输入框,可输入SQL语句,支持各种不同的数据源,包括传统的关系型数据库(如MySQL、Oracle、SQL Server等)和非关系型数据库(如ClickHouse、Impala、Hive),可点击执行,获得并展示执行结果。
很可能会遇到的需求:在SQL语句提交到数据源执行之前,对SQL进行分析,是否有标点符号问题,语法问题,获取查询的表名,获取查询的字段名(进而做字段映射、以及数据推送)等。
注:本文局限于Java语言。
调研
Druid
阿里的Druid,开源作者推广时,称其为最强大的,性能最佳的数据库连接池。但是benchmark实验下来,好像不如HikariCP,可参考JDBC与数据库连接池。
但是这并不妨碍国产的开源产品被广泛使用,Druid的数据库监控功能,SQL Parser,即SQL解析就很有应用场景。
解析代码片段:
public List<String> getAllQuery(String sql, String dbType) {
List<SQLStatement> stmtList = SQLUtils.parseStatements(sql, dbType);
SQLASTOutputVisitor.defaultPrintStatementAfterSemi = false;
List<String> result = stmtList.stream().map(SQLStatement::toString).collect(Collectors.toList());
SQLASTOutputVisitor.defaultPrintStatementAfterSemi = null;
return result;
}
对于Sql Server如下语句:
exec bi..sp_iData_user_role;
select 1 as a;
解析报错:
java.lang.ClassCastException: com.alibaba.druid.sql.visitor.SQLASTOutputVisitor cannot be cast to com.alibaba.druid.sql.dialect.sqlserver.visitor.SQLServerASTVisitor
解决方法:
List<String> result = stmtList.stream().map(x -> SQLUtils.toSQLString(x, dbType)).collect(Collectors.toList());
缺点:支持对Hive SQL的解析,但是不支持Impala SQL的解析。
有人针对Impala SQL解析这一潜在功能支持问题,提过pull request,但是未被采纳。
Antlr4
很底层的技术,Sharding Sphere就用到此技术。不仅仅可以用于SQL解析。
<dependency>
<groupId>org.antlr</groupId>
<artifactId>antlr4</artifactId>
</dependency>
Apache Calcite
一款开源的动态数据管理框架,具备SQL解析、SQL校验、查询优化、SQL生成以及数据连接查询等功能,常用于为大数据工具提供SQL能力,如Hive、Flink等。
Calcite对标准SQL支持良好,但是对传统的关系型数据方言支持度较差。
JSqlParser
JSqlParser,是基于JavaCC的开源SQL Parser,是General SQL Parser的Java实现版本。
上手容易,操作简单,只能对sql语句进行拆分解析,和数据库无关。只支持关系型数据库,不支持NoSQL和大数据计算引擎等,
另起一篇,参考JSqlParser。
fdb-sql-parser
FoundationDB在被Apple收购前开源的SQL Parser,目前已无人维护。
Maven依赖如下:
<dependency>
<groupId>com.foundationdb</groupId>
<artifactId>fdb-sql-parser</artifactId>
<version>1.6.1</version>
</dependency>
最后一次发布时间停留在Feb 03, 2015。
impala-frontend
使用Impala parser解析SQL
https://github.com/apache/impala
https://mvnrepository.com/artifact/org.apache.impala/impala-frontend
但是根据上面的文章使用Impala parser解析SQL,程序运行失败,报错信息:
java.lang.RuntimeException: Failed to load libfesupport.so from any candidate location:
缺失一个libfesupport.so
文件。
SQL Advisor
GitHub,美团点评开源。
Sharding Sphere
国产开源数据库中间件。Sharding Sphere前身是Sharding-JDBC,后进入Apache孵化项目,并孵化成功。开源维护者已开始创业,基于此在做一个庞大的数据库生态系统。组件可插拔,包括SQL解析模块。
部分参考资料,详见:sql-parser
gsqlparser
https://www.sqlparser.com/download.php
https://github.com/sqlparser/gsp_demo_java
Maven仓库找不到这个jar,需要自己上传。有功能缺陷,不建议使用。
dt-sql-parser
Node JS包,https://www.npmjs.com/package/dt-sql-parser/v/2.0.11
实现
判断是否为查询语句
/**
* 判断是否为查询语句
*/
public static boolean isSelect(String sql, String jdbcType) {
SQLStatementParser parser = SQLParserUtils.createSQLStatementParser(sql, jdbcType);
Token token = parser.getExprParser().getLexer().token();
return token.equals(Token.SELECT);
}
作为一个SQL new boy,以为只有select查询查询语句。
直到遇到下面这种SQL(经过简化):
with mingxi as
(select *
from (select a.call_system
, row_number()
over (partition by a.asp_tn_seqnum order by (unix_timestamp(b.createtime) - unix_timestamp(a.call_start_time))) rnd
from edw.d_cs_cdr_dly a
where a.call_system = "aspect_tieniu") x1
where rnd = 1)
select call_system
from mingxi;
关于With As查询语句,可参考WITH AS查询
获取查询字段
内容较多,另起一篇,参考SQL自动生成字段功能实现
获取依赖表
推荐文章
- SQL解析在美团的应用
- 比开源快30倍的自研SQL Parser设计与实践
- 人人都可以实现的SQL parser
- java sql解析器比较druid sql parser vs jsqlparser vs fdb-sql-parser
- SQL解析器使用指南
- https://www.cnblogs.com/Jcloud/p/16771418.html
- http://www.apache-druid.cn/
- Alibaba Druid v1.0 使用手册