需求:
包装工厂接到不同规格纸箱的订单,按订单批次进料(原纸),原纸的宽度(width)有多种规格(20多种)但长度(long)不限,原料价格按长度梯度有优惠。为简化求解,先将纸箱(产品)展开转化为矩形(矩形),然后按长(l)、宽(w),分别求解不同宽度原纸的长度,从而计算出价格;找出相对最优解。
同种矩形,从原纸的宽度先排列(原纸横排)
1 矩形竖排(单个),用矩形的宽度w,求解不同宽度原纸的长度,计算出价格
long = w*size ; price = long * 梯度优惠
2 矩形横排(单个),用矩形的长度,求解不同宽度原纸的长度,计算出价格
long = l*size;price = long * 梯度优惠
3 矩形竖排(n个),用矩形的宽度w,求解不同宽度原纸的长度,计算出价格
n=width/w
long = w*((size-1)/n +1) ; price = long * 梯度优惠
4 矩形横排(n个),用矩形的长度,求解不同宽度原纸的长度,计算出价格
n=width/l
long = l*((size-1)/n +1) ; price = long * 梯度优惠
5 矩形横竖排(n个),便于工业操作,竖排的一直竖排,横排的一直横排,求解不同宽度原纸的长度,计算出价格
不同种矩形(先按两种矩形),从原纸的宽度先排列(原纸横排)
在二维矩形最优解有很多算法,但都是学术研究的解法,太过于理想不适合工业生产,特别是小型企业,存在生产限制条件的企业;大型企业都有固定的产品规格,供应原料商会提供相对规格的原料,根本不会用到二维矩形最优解来解决下料问题。我们所熟知的就是那些为小众公司带来方便的技术应用。