数塔
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 27776 Accepted Submission(s): 16697
Problem Description
在讲述DP算法的时候,一个经典的例子就是数塔问题,它是这样描述的:
有如下所示的数塔,要求从顶层走到底层,若每一步只能走到相邻的结点,则经过的结点的数字之和最大是多少?
已经告诉你了,这是个DP的题目,你能AC吗?
有如下所示的数塔,要求从顶层走到底层,若每一步只能走到相邻的结点,则经过的结点的数字之和最大是多少?
已经告诉你了,这是个DP的题目,你能AC吗?
Input
输入数据首先包括一个整数C,表示测试实例的个数,每个测试实例的第一行是一个整数N(1 <= N <= 100),表示数塔的高度,接下来用N行数字表示数塔,其中第i行有个i个整数,且所有的整数均在区间[0,99]内。
Output
对于每个测试实例,输出可能得到的最大和,每个实例的输出占一行。
Sample Input
1 5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5
Sample Output
30思路:动态规划,用逆序枚举,在计算的d[i][j]前,它所需要的d[i+1][j]和d[i+1][j+1]一定已经计算出来了。代码:#include<stdio.h> #include<stdlib.h> int main() { int i,j,t,n,a[200][200],d[100][100],max; scanf("%d",&t); while(t--) { scanf("%d",&n); for(i=1;i<=n;i++) { for(j=1;j<=i;j++) { scanf("%d",&a[i][j]); } } for(j=1;j<=n;j++) { d[n][j]=a[n][j]; } for(i=n-1;i>=1;i--) { for(j=1;j<=i;j++) { max=(d[i+1][j]>d[i+1][j+1])?d[i+1][j]:d[i+1][j+1]; d[i][j]=a[i][j]+max; } } printf("%d\n",d[1][1]); } return 0; }