[基础] 原码、补码、反码

讲解如何计算原码、反码、补码;以及为何要使用反码、补码;以及在计算机中对于有符号整数范围的计算。

1 机器数、真值

1.1 机器数

在计算机中,一个数用二进制形式表示,叫做该数的机器码。

  • 注意,在有符号数据中,这些二进制的最高位表示符号位,即正数为0、负数为1。

比如:假设一个字长为8bits的整数+3,其二进制形式为0000 0011;而-3的二进制形式为1000 0011

该例子中的,0000 00111000 0011 就是机器码。

1.2 真值

带符号位的机器数对应的真正数值称为真值

如:

  • 0000 0011 = +3;
  • 1000 0011 = -3;而不是直接将该二进制换算成十进制数131。所以,机器数的形式 就不等于 真正的数值。

2 原码、反码、补码的计算方法

2.1 原码

原码就是符号位 加上 真值的绝对值。即,其最高位用来表示符号,其余位表示值。

例如:字长为8位的二进制数:

[+1]原 = 0000 0001

[-1]原 = 1000 0001

所以,用原码表示的字长为8位的二进制数的范围为:[1111 1111 , 0111 1111],即:[-127 , 127]

这里与我们常见的[-128 , 127]范围不一样,[详情见后文](##3.3 补码表示减法)。

2.2 反码

反码表示方法:

  • 正数的反码与原码一样;
  • 负数的反码:在原码基础上符号位不变,其余为都取反。

如:

[+1] = [00000001]原 = [0 0000001]反

[-1] = [10000001]原 = [1 1111110]反

所以,对于负数,我们需要将其转换成原码,在计算其数值。

2.3 补码

补码:从原来"反码"的基础上,补充一个新的代码。所以使用补码表示字长为8bits的有符号数时,其范围为:[-128 , 127]

补码的表示方法是:

  • 正数的补码 就是其本身
  • 负数的补码 是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)

[+1] = [00000001]原 = [00000001]反 = [00000001]补

[-1] = [10000001]原 = [11111110]反 = [11111111]补

所以,对于负数,我们需要将其转换成原码,在计算其数值。

3 为何使用原码、反码、补码

对于正数因为三种编码方式的结果都相同:

[+1] = [00000001]原 = [00000001]反 = [00000001]补

但是对于负数:

[-1] = [10000001]原 = [11111110]反 = [11111111]补

那原码是最容易理解的,为什么还要出现反码、补码呢?

答:对于人脑而言,我们可以直观的根据符号位对真值区域进行加减法;但是对于机器而言,加减乘除是基础运算,要尽可能设计的简单,计算机辨别“符号位”的话显然会让计算机的电路设计的非常复杂。所以,就想出了让符号位也参与运算。

比如,根据运算法则减去一个数就等于加上这个数的负数:1-1 = 1 + (-1) = 0。所以,机器可以只设计加法,而减法用加法替代。

于是就开始探索将符号位参与运算,并且只保留加法的方法。如计算十进制表达式:1-1=0

3.1 原码表示减法

  • 原码:1 - 1 = 1 + (-1) = [00000001]原 + [10000001]原 = [10000010]原 = -2

    可以看出,对于原码计算,如果将符号位也进行计算,对于减法来说,结果是错误的。这也就是为何计算机内部不是用原码表示一个数

3.2 反码表示减法

  • 反码:为了解决原码计算减法的问题,出现了反码。还是计算上面的减法:

    1 - 1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原= [0000 0001]反 + [1111 1110]反 = [1111 1111]反 = [1000 0000]原 = -0

    可以看出,结果的真值部分是对的;但是有一个问题:“0”这个特殊的值,虽然我们理解的+0-0是一样的,但是0带符号没有任何意义。而且会有[0000 0000]原和[1000 0000]原两个编码表示0。

3.3 补码表示减法

  • 补码:所以,才有补码的出现,解决了0的符号、及两个编码的问题:

    1-1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原 = [0000 0001]补 + [1111 1111]补 = [0000 0000]补=[0000 0000]原

此时,0的编码只有[0000 0000]来表示。而且不存在-0的编码了。此时的[1000 0000]表示的是十进制-128

为何表示的是-128:-1-127的结果应该是-128, 在用补码运算的结果中, [1000 0000]补 就是-128.

(-1) + (-127) = [1000 0001]原 + [1111 1111]原 = [1111 1111]补 + [1000 0001]补 = [1000 0000]补

但是,注意这里的-128的表示是用之前的-0的补码。所以,-128没有原码、反码。(对-128的补码表示[1000 0000]补 算出来的原码是[0000 0000]原 , 这是不正确的)

使用补码:不仅仅修复了0的符号以及存在两个编码的问题, 而且还能够多表示一个最低数

这就是为什么8位二进制, 使用原码或反码表示的范围为[-127, +127], 而使用补码表示的范围为**[-128, 127]**。这也就说明了机器是使用补码的方式来表示数据的。

4 计算机如何用加法表示减法

计算机巧妙地把符号位参与运算, 并且将减法变成了加法, 背后蕴含了怎样的数学原理呢?

比如:将钟表想象成是一个1位的12进制数. 如果当前时间是6点, 我希望将时间设置成4点, 需要怎么做呢?我们可以:

  1. 往回拨2个小时: 6 - 2 = 4

  2. 往前拨10个小时: (6 + 10) mod 12 = 4

  3. 往前拨10+12=22个小时: (6+22) mod 12 =4

2,3方法中的mod是指取模操作, 16 mod 12 =4 即用16除以12后的余数是4.

所以钟表往回拨(减法)的结果可以用往前拨(加法)替代!

现在的焦点就落在了如何用一个正数, 来替代一个负数。上面的例子我们能感觉出来一些端倪, 发现一些规律. 但是数学是严谨的. 不能靠感觉。

接下来介绍一些概念:

4.1 相关概念

4.1.1 同余

两个整数a,b,若它们除以整数m所得的余数相等,则称a,b对于模m同余。记作a ≡ b (mod m),读作 a 与 b 关于模 m 同余。则a,b互称为同余数

举例说明:

4 mod 12 = 4

16 mod 12 = 4

28 mod 12 = 4

所以4, 16, 28关于模 12 同余。

4.1.2 负数取模

下面是关于mod运算的数学定义:img(同样适用于正数取模)。

如:-3 mod 2

= -3 - 2xL -3/2 J

= -3 - 2xL-1.5J

= -3 - 2x(-2)

= -3 + 4 = 1

从而,有:

(-2) mod 12 = 12-2=10

(-4) mod 12 = 12-4 = 8

(-5) mod 12 = 12 - 5 = 7

4.2 开始证明

再回到时钟的问题上:

回拨2小时 = 前拨10小时

回拨4小时 = 前拨8小时

回拨5小时= 前拨7小时

注意, 这里发现的规律。结合上面学到的同余的概念.实际上:

(-2) mod 12 = 1010 mod 12 = 10

所以,-2与10是同余的。

(-4) mod 12 = 88 mod 12 = 8

-4与8是同余的。

要实现用正数替代负数, 只需要运用同余数的两个定理:

4.2.1 同余数定理:反身性、线性运算定理

反身性a ≡ a (mod m)

线性运算定理

如果a ≡ b (mod m),c ≡ d (mod m) 那么:

(1) a ± c ≡ b ± d (mod m)

(2) a * c ≡ b * d (mod m)

例如:

7 ≡ 7 (mod 12)

(-2) ≡ 10 (mod 12)

7 -2 ≡ 7 + 10 (mod 12)

现在我们为一个负数, 找到了它的正数同余数。


接下来,回到二进制问题上。看一下: 2-1=1的问题

2-1=2+(-1) = [0000 0010]原 + [1000 0001]原= [0000 0010]反 + [1111 1110]反

上面的,-1的反码表示是1111 1110. 如果这里将[1111 1110]认为是原码, 则[1111 1110]原 = -126, 这里将符号位除去, 即认为是126.

发现有如下规律:

(-1) mod 127 = 126

126 mod 127 = 126

即:

(-1) ≡ 126 (mod 127)

2-1 ≡ 2+126 (mod 127)

2-12+126的余数结果是相同的! 而这个余数, 正式我们的期望的计算结果: 2-1=1。

所以说,负数的反码, 实际上是这个数对于一个膜的余数,并对该余数的符号位设置为1

注意:这个膜并不是我们的二进制, 而是所能表示的最大值。这就和钟表一样, 转了一圈后总能找到在可表示范围内的一个正确的数值!

而2+126很显然相当于钟表转过了一轮, 而因为符号位是参与计算的, 正好和溢出的最高位形成正确的运算结果。


然后,既然反码可以将减法变成加法, 那么现在计算机使用的补码呢? 为什么在反码的基础上加1, 还能得到正确的结果?

2-1=2+(-1) = [0000 0010]原 + [1000 0001]原 = [0000 0010]补 + [1111 1111]补

如果把[1111 1111]当成原码, 去除符号位, 则:[0111 1111]原 = 127

其实, 在反码的基础上+1, 只是相当于增加了膜的值:

(-1) mod 128 = 127

127 mod 128 = 127

2-1 ≡ 2+127 (mod 128)

此时, 表盘相当于每128个刻度转一轮. 所以用补码表示的运算结果最小值和最大值应该是[-128, 128]。

但是由于0的特殊情况, 没有办法表示128, 所以补码的取值范围是[-128, 127]。

5 小结

  1. 计算机中负数是用补码的形式保存、并用它参与加减法运算的,减法会被转换为加法,计算机中没有减法运算。
  2. 反码是为了解决减法运算,补码是为了解决反码产生的±0的问题。(参考:为什么要设计出反码补码?
  3. 对人而言二进制所代表的值一定是从原码求出的,开头如果是1的二进制,一定要说明其是原码、反码还是补码。
  4. 在原码、反码、补码相互转换以及求对应的十进制求值时,符号位是绝不参与的;但是在加减过程中,是参与位运算的。
  5. 计算机中规定了+0对应的二进制就是0,那么-0就没有意义了,必须找一个数和它对应,这个数就是该字长所表示范围的最小的数。比如:
    1. byte的最小值-128、short的最小值-32768、int的最小值-2147483648都是用对应的-0的原码来进行表示,这是人为规定的、人为规定的、人为规定的。

6 参考

  1. 原码, 反码, 补码 详解

  2. 【秒懂】byte的取值范围为什么是-128~127?

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值