贷款业务——还款方式以及计算公式对比

等额本息

等额本息:借款人每月还的金额固定(本金+利息总额)。

  • 利息=月初剩余本金 × \times ×月利率,剩余本金越还越少,所以每月要还的利息减少。
  • 等额本息每月还款总额固定,前期还款中利息占比较高(以支付利息为主),后期还款中利息占比较低(归还本金为主)。

计算公式

  • 贷款额为A,月利率为M,年利率为Y,还款月数为n,每月还款总额为T。
  • Y = M * 12
    每月还款额 ( 本金 + 利息 ) T = A × [ M × ( 1 + M ) n ] ( 1 + M ) n − 1 每月还款额(本金+利息)T={{A}}\times\frac{ \left[M \times (1 + M)^n\right]}{(1 + M)^n - 1} 每月还款额(本金+利息)T=A×(1+M)n1[M×(1+M)n]

公式推导

  • 这里的需求就是要求每月还款总额一样,使用归纳法推导出公式:
  • 分析
    • 第一个月末:本金余额 A 1 = A × ( 1 + M ) − T A_1={{A}}\times{(1+M)-T} A1=A×(1+M)T
    • 第一个月末:本金余额:
      A 2 = A 1 × ( 1 + M ) − T = [ A × ( 1 + M ) − T ] × ( 1 + M ) − T = A × ( 1 + M ) 2 − T × [ 1 + ( 1 + M ) ] \begin{align*} {A_2} &={{A_1}}\times{(1+M)-T} \\ &= {[{{{A}}\times{(1+M)-T}]}}\times{(1+M)-T} \\ &= {{A}}\times{(1+M)^2-T\times[1+(1+M)]} \end{align*} A2=A1×(1+M)T=[A×(1+M)T]×(1+M)T=A×(1+M)2T×[1+(1+M)]
      。。。。。。
    • 第k个月末:本金余额:
      A k = A k − 1 × ( 1 + M ) − T = A × ( 1 + M ) k − T × [ 1 + ( 1 + M ) + ( 1 + M ) 2 + ⋯ + ( 1 + M ) k − 1 ] \begin{align*} {A_k} &={{A_{k-1}}}\times{(1+M)-T} \\ &= {{A}}\times{(1+M)^k-T\times[1+(1+M)+(1+M)^2+\dots+(1+M)^{k-1}]} \end{align*} Ak=Ak1×(1+M)T=A×(1+M)kT×[1+(1+M)+(1+M)2++(1+M)k1]
  • 上面公式右边为等比数列,得到计算每月剩余本金的通用公式:
    A k = A × ( 1 + M ) k − T × 1 − ( 1 + M ) k 1 − ( 1 + M ) \begin{align*} {A_k} = {{A}}\times{(1+M)^k-T\times\frac{1 - (1 + M)^k}{1-(1 + M)}} \end{align*} Ak=A×(1+M)kT×1(1+M)1(1+M)k
  • 最后一个月末贷款还完, A n = 0 {A_n} =0 An=0,可求得每月还款金额 T:
    T = A × [ M × ( 1 + M ) n ] ( 1 + M ) n − 1 T={{A}}\times\frac{ \left[M \times (1 + M)^n\right]}{(1 + M)^n - 1} T=A×(1+M)n1[M×(1+M)n]

示例

贷款金额10万,年利率5%,贷款一年(12期)

期数月供月供本金月供利息本金余额
18560.758144.08416.6791855.92
28560.758178.02382.7383677.90
38560.758212.09348.6675465.81
48560.758246.31314.4467219.50
58560.758280.67280.0858938.83
68560.758315.17245.5850623.66
78560.758349.82210.9342273.84
88560.758384.61176.1433889.23
98560.758419.54141.2125469.69
108560.758454.63106.1217015.06
118560.758489.8570.908525.21
128560.738525.2135.520.00
总计102728.98100000.002728.98

等额本金

等额本金是将贷款总金额平摊到每月,也就是每月还款的本金固定,每月还款利息为月初本金余额 × \times ×月利率。

  • 利息=月初剩余本金 × \times ×月利率,剩余本金越还越少,所以每月要还的利息减少。
  • 等额本金每月还款本金固定,前期未还总本金多,所以每期待还利息多;后期未还总本金少,所以每期待还利息少。
  • 等额本金前期还款总额较多,压力较大;越到后面,每月待还利息减少,每月还款总额减少。

计算公式

  • 贷款额为A,月利率为M,年利率为Y,还款月数为n,每月还款总额为T。
  • Y = M * 12
  • 每月还款额=(贷款本金 ÷ 还款月数)+(本金 - 已归还本金累计额)×每月利率。
    每月还款额 ( 本金 + 利息 ) = ( A n ) + [ A − A n × ( n − 1 ) ] × M 每月还款额(本金+利息)=(\frac{A}{n})+[A - \frac{A}{n}\times (n-1)]\times M 每月还款额(本金+利息)=(nA)+[AnA×(n1)]×M

等额本息与等额本金对比

  • 等额本息每期还款总额相等;等额本金每期还款本金相等,利息逐期递减,还款总额逐期递减。
  • 在相同利率下,等额本息比等额本金支付的总利息多。理解:前面谈到等额本息每月还款额固定,前期主要还利息,还款本金相比较少,所以与等额本金还款相比,每期还款完后,剩余本金较多,计算利息就会越大,有点利滚利的感觉。
  • 等额本金前期压力较大,等额本息压力均摊到每月。

示例

贷款金额10万,年利率5%,贷款一年(12期)

期数月供月供本金月供利息本金余额
18750.008333.33416.6791666.67
28715.278333.33381.9483333.34
38680.558333.33347.2275000.01
48645.838333.33312.5066666.68
58611.118333.33277.7858333.35
68576.398333.33243.0650000.02
78541.668333.33208.3341666.69
88506.948333.33173.6133333.36
98472.228333.33138.8925000.03
108437.508333.33104.1716666.70
118402.778333.3369.448333.37
128368.098333.3734.720.00
总计102708.33100000.002708.33

先息后本(按月付息,到期还本)

先息后本每月仅需支付利息,不需偿还本金,到期后还本金。本金未还,所以月还利息按照贷款总金额计算。

  • 利息=贷款总金额 × \times ×月利率

示例

贷款金额10万,年利率5%,贷款一年(12期)

扣款日期本息本金利息本金余额
2024-02-01430.560.00430.56100000.00
2024-03-01402.780.00402.78100000.00
2024-04-01430.560.00430.56100000.00
2024-05-01416.670.00416.67100000.00
2024-06-01430.560.00430.56100000.00
2024-07-01416.670.00416.67100000.00
2024-08-01430.560.00430.56100000.00
2024-09-01430.560.00430.56100000.00
2024-10-01416.670.00416.67100000.00
2024-11-01430.560.00430.56100000.00
2024-12-01416.670.00416.67100000.00
2025-01-01100430.56100000.00430.560.00

到期一次还本付息

到期后归还本金和产生的利息。

示例

贷款金额10万,年利率5%,贷款一年(12期)

扣款日期本息本金利息本金余额
2025-01-01105083.33100000.005083.330.00

等本等息(等额等息)

等本等息,月还利息是按照初次借款总金额计算,即使到最后一期剩余极少的本金,仍按照初次借款金额计算。

  • 利息=贷款总金额 × \times ×月利率
  • 利息与先息后本计算方式一样,但等本等息每期还款需要本金和利息,而先息后本在前面期次只需还利息,最后一期再还总本金。

等本等息(砍头息)

砍头息在放款时,先从放款本金里面扣除实际产生的总利息,然后按月归还本金。借款人实际到手金额减少。比如借款人贷款12万,贷款一年,总利息1万,在放款时先扣除1万利息,借款人到手只有11万,之后每月归还1万本金。

等额本金还款法是一种贷款偿还方式,在这种方式下,每个还款金额不同,但每所还本金相同。随着剩余本金逐渐减少,支付的利息也随之递减。 对于等额本金贷款计算公式及其实现方法如下: ### 计算公式 每期(本金 = 贷款本金 ÷ 还款总期数 每期(付利息 = (贷款本金 - 已还本金累计) × 利率 每期(还总额 = 每期(本金 + 每期(付利息 其中, - **贷款本金** 是指借款人向金融机构借入的资金数额; - **还款总期数** 是指整个贷款期间内的还款次数,通常以为单位; - **已还本金累计** 是指截至当期为止已经偿还给放贷机构的所有本金之和; - **利率** 可以通过年化百分比除以12来获得。 ### 实现方法及配置 #### 方法一:手动计算 可以利用电子表格软件如Excel来进行手工计算。创建一个工作表,输入贷款本金、期限以及年利率信息,之后用上述公式逐行计算每一期需要偿还的具体金额。 #### 方法二:编程实现 也可以编写程序自动完成这些运算过程。这里给出Python的一个简单例子: ```python def equal_principal_payment(principal, annual_rate, periods): monthly_rate = annual_rate / 12 / 100 # Convert to decimal and per month principal_per_period = principal / periods for period in range(1, periods+1): interest_for_period = (principal -1)*principal_per_period)) * monthly_rate total_payment = principal_per_period + interest_for_period yield { 'Period': period, 'Principal': round(principal_per_period, 2), 'Interest': round(interest_for_period, 2), 'Total Payment': round(total_payment, 2) } # Example usage: for payment_info in equal_principal_payment(loan_amount=100000, annual_rate=5.5, periods=12*30): # Assuming a loan of RMB 100k at an annual rate of 5.5% over 30 years. print(payment_info) ``` 此段代码定义了一个名为`equal_principal_payment`函数接受三个参数——贷款本金(`principal`)、年利率(`annual_rate`) 和 总期数(`periods`) ,并且返回一个迭代器对象用于遍历各期付款详情。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值