import scala.collection.mutable.ArrayBuffer
/**
* 稀疏 sparsearray 数组
* 编写的五子棋程序中,有存盘退出和续上盘的功能。
* 分析问题:
* 因为该二维数组的很多值是默认值 0, 因此记录了很多没有意义的数据.->稀疏数组
*
* 基本介绍
* 当一个数组中大部分元素为0,或者为同一个值的数组时,可以使用稀疏数组来保存该数组。
*
* 稀疏数组的处理方法是:
* 1) 记录数组一共有几行几列,有多少个不同的值
* 2) 把具有不同值的元素的行列及值记录在一个小规模的数组中,从而缩小程序的规模
*
* 应用实例
* 1) 使用稀疏数组,来保留类似前面的二维数组(棋盘、地图等等)
* 2) 把稀疏数组存盘,并且可以从新恢复原来的二维数组数
*/
object SparseArr {
def main(args: Array[String]): Unit = {
val rowSize = 11
val colSize = 11
//演示一个稀疏数组的使用
//ofDim方法可以构建一个多维数组
val chessMap = Array.ofDim[Int](rowSize, colSize)
//初始化地图
chessMap(1)(2) = 1 //1表示黑子
chessMap(2)(3) = 2 //2表示白子
//输出原始地图,遍历
for (item <- chessMap) {
for (item2 <- item) {
printf("%d\t", item2)
}
println()
}
//将 chessmap 转成稀疏数组
// 思路 =》 效果是达到对数据的压缩
val sparseArr = ArrayBuffer[Node]()
//放入第一个元素,值默认为0
val node = new Node(rowSize, rowSize, 0)
sparseArr.append(node)
//压缩数组成稀疏数组
for (i <- 0 until chessMap.length) {
for (j <- 0 until chessMap(i).length) {
//判断该值是否为 0, 如果不为 0,就保存
if (chessMap(i)(j) != 0) {
//构建一个node
val node = new Node(i, j, chessMap(i)(j))
sparseArr.append(node) //加入到稀疏数组
}
}
}
println("--------稀疏数组----------")
for (node <- sparseArr) {
printf("%d\t%d\t%d\n", node.row, node.col, node.value)
}
//读盘 -> 稀疏数组
//稀疏数组-> 原始数组
//读取稀疏数组的第一个节点
val newNode = sparseArr(0)
val rowSize2 = newNode.row
val colSize2 = newNode.col
//构建一个新的原始数组
val chessMap2 = Array.ofDim[Int](rowSize2, colSize2)
for (i <- 1 until sparseArr.length) {
val node = sparseArr(i)
chessMap2(node.row)(node.col) = node.value
}
println("-----------从稀疏数组恢复后的地图---------------")
for (item <- chessMap2) {
for (item2 <- item) {
printf("%d\t", item2)
}
println()
}
}
}
class Node(val row: Int, val col: Int, val value: Int)